Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574017

RESUMEN

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Animales , Ratones , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Aflatoxina B1/toxicidad , Ligandos , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogénesis
2.
Mol Biol Rep ; 51(1): 299, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345740

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS: The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION: This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.


Asunto(s)
Adenina/análogos & derivados , Neoplasias del Colon , ARN , Humanos , ARN/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias del Colon/genética
3.
Genome Res ; 30(10): 1517-1532, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32963031

RESUMEN

The recent identification of recurrently mutated epigenetic regulator genes (ERGs) supports their critical role in tumorigenesis. We conducted a pan-cancer analysis integrating (epi)genome, transcriptome, and DNA methylome alterations in a curated list of 426 ERGs across 33 cancer types, comprising 10,845 tumor and 730 normal tissues. We found that, in addition to mutations, copy number alterations in ERGs were more frequent than previously anticipated and tightly linked to expression aberrations. Novel bioinformatics approaches, integrating the strengths of various driver prediction and multi-omics algorithms, and an orthogonal in vitro screen (CRISPR-Cas9) targeting all ERGs revealed genes with driver roles within and across malignancies and shared driver mechanisms operating across multiple cancer types and hallmarks. This is the largest and most comprehensive analysis thus far; it is also the first experimental effort to specifically identify ERG drivers (epidrivers) and characterize their deregulation and functional impact in oncogenic processes.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Neoplasias/genética , Sistemas CRISPR-Cas , Proliferación Celular/genética , Simulación por Computador , Metilación de ADN , Epigenómica , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Humanos , Neoplasias/patología , ARN Neoplásico/metabolismo
4.
BMC Med ; 21(1): 17, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36627699

RESUMEN

BACKGROUND: Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS: Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS: Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS: Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.


Asunto(s)
Epigenoma , Obesidad Infantil , Embarazo , Femenino , Humanos , Niño , Epigenoma/genética , Sangre Fetal , Obesidad Infantil/genética , Metilación de ADN/genética , Peso al Nacer/genética , Islas de CpG , Estudio de Asociación del Genoma Completo , Factores de Transcripción de Tipo Kruppel/genética
5.
Nucleic Acids Res ; 49(17): 9738-9754, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34403459

RESUMEN

Estrogen hormones are implicated in a majority of breast cancers and estrogen receptor alpha (ER), the main nuclear factor mediating estrogen signaling, orchestrates a complex molecular circuitry that is not yet fully elucidated. Here, we investigated genome-wide DNA methylation, histone acetylation and transcription after estradiol (E2) deprivation and re-stimulation to better characterize the ability of ER to coordinate gene regulation. We found that E2 deprivation mostly resulted in DNA hypermethylation and histone deacetylation in enhancers. Transcriptome analysis revealed that E2 deprivation leads to a global down-regulation in gene expression, and more specifically of TET2 demethylase that may be involved in the DNA hypermethylation following short-term E2 deprivation. Further enrichment analysis of transcription factor (TF) binding and motif occurrence highlights the importance of ER connection mainly with two partner TF families, AP-1 and FOX. These interactions take place in the proximity of E2 deprivation-mediated differentially methylated and histone acetylated enhancers. Finally, while most deprivation-dependent epigenetic changes were reversed following E2 re-stimulation, DNA hypermethylation and H3K27 deacetylation at certain enhancers were partially retained. Overall, these results show that inactivation of ER mediates rapid and mostly reversible epigenetic changes at enhancers, and bring new insight into early events, which may ultimately lead to endocrine resistance.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , Estradiol/fisiología , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Código de Histonas , Humanos , Células MCF-7 , Receptores de Estrógenos/metabolismo , Transcripción Genética
6.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834058

RESUMEN

Puberty is a critical developmental period of life characterized by marked physiological changes, including changes in the immune system and gut microbiota development. Exposure to inflammation induced by immune stressors during puberty has been found to stimulate central inflammation and lead to immune disturbance at distant sites from the gut; however, its enduring effects on gut immunity are not well explored. Therefore, in this study, we used a pubertal lipopolysaccharides (LPS)-induced inflammation mouse model to mimic pubertal exposure to inflammation and dysbiosis. We hypothesized that pubertal LPS-induced inflammation may cause long-term dysfunction in gut immunity by enduring dysregulation of inflammatory signaling and epigenetic changes, while prebiotic/probiotic intake may mitigate the gut immune system deregulation later in life. To this end, four-week-old female Balb/c mice were fed prebiotics/probiotics and exposed to LPS in the pubertal window. To better decipher the acute and enduring immunoprotective effects of biotic intake, we addressed the effect of treatment on interleukin (IL)-17 signaling related-cytokines and pathways. In addition, the effect of treatment on gut microbiota and epigenetic alterations, including changes in microRNA (miRNA) expression and DNA methylation, were studied. Our results revealed a significant dysregulation in selected cytokines, proteins, and miRNAs involved in key signaling pathways related to IL-17 production and function, including IL-17A and F, IL-6, IL-1ß, transforming growth factor-ß (TGF-ß), signal transducer and activator of transcription-3 (STAT3), p-STAT3, forkhead box O1 (FOXO1), and miR-145 in the small intestine of adult mice challenged with LPS during puberty. In contrast, dietary interventions mitigated the lasting adverse effects of LPS on gut immune function, partly through epigenetic mechanisms. A DNA methylation analysis demonstrated that enduring changes in gut immunity in adult mice might be linked to differentially methylated genes, including Lpb, Rorc, Runx1, Il17ra, Rac1, Ccl5, and Il10, involved in Th17 cell differentiation and IL-17 production and signaling. In addition, prebiotic administration prevented LPS-induced changes in the gut microbiota in pubertal mice. Together, these results indicate that following a healthy diet rich in prebiotics and probiotics is an optimal strategy for programming immune system function in the critical developmental windows of life and controlling inflammation later in life.


Asunto(s)
Interleucina-17 , Hongos Shiitake , Ratones , Animales , Femenino , Interleucina-17/metabolismo , Hongos Shiitake/metabolismo , Lipopolisacáridos/toxicidad , Maduración Sexual , Prebióticos , Transducción de Señal , Citocinas/metabolismo , Inflamación , Epigénesis Genética
7.
Breast Cancer Res ; 24(1): 59, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068634

RESUMEN

BACKGROUND: DNA methylation in blood may reflect adverse exposures accumulated over the lifetime and could therefore provide potential improvements in the prediction of cancer risk. A substantial body of research has shown associations between epigenetic aging and risk of disease, including cancer. Here we aimed to study epigenetic measures of aging and lifestyle-related factors in association with risk of breast cancer. METHODS: Using data from four prospective case-control studies nested in three cohorts of European ancestry participants, including a total of 1,655 breast cancer cases, we calculated three methylation-based measures of lifestyle factors (body mass index [BMI], tobacco smoking and alcohol consumption) and seven measures of epigenetic aging (Horvath-based, Hannum-based, PhenoAge and GrimAge). All measures were regression-adjusted for their respective risk factors and expressed per standard deviation (SD). Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional or unconditional logistic regression and pooled using fixed-effects meta-analysis. Subgroup analyses were conducted by age at blood draw, time from blood sample to diagnosis, oestrogen receptor-positivity status and tumour stage. RESULTS: None of the measures of epigenetic aging were associated with risk of breast cancer in the pooled analysis: Horvath 'age acceleration' (AA): OR per SD = 1.02, 95%CI: 0.95-1.10; AA-Hannum: OR = 1.03, 95%CI:0.95-1.12; PhenoAge: OR = 1.01, 95%CI: 0.94-1.09 and GrimAge: OR = 1.03, 95%CI: 0.94-1.12, in models adjusting for white blood cell proportions, body mass index, smoking and alcohol consumption. The BMI-adjusted predictor of BMI was associated with breast cancer risk, OR per SD = 1.09, 95%CI: 1.01-1.17. The results for the alcohol and smoking methylation-based predictors were consistent with a null association. Risk did not appear to substantially vary by age at blood draw, time to diagnosis or tumour characteristics. CONCLUSION: We found no evidence that methylation-based measures of aging, smoking or alcohol consumption were associated with risk of breast cancer. A methylation-based marker of BMI was associated with risk and may provide insights into the underlying associations between BMI and breast cancer.


Asunto(s)
Neoplasias de la Mama , Envejecimiento/genética , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Metilación de ADN , Epigénesis Genética , Femenino , Humanos , Estilo de Vida , Estudios Prospectivos , Factores de Riesgo
8.
J Transl Med ; 20(1): 353, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945616

RESUMEN

BACKGROUND: Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS: We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS: DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS: We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.


Asunto(s)
Metilación de ADN , Sangre Fetal , Envejecimiento/genética , Biomarcadores , Metilación de ADN/genética , ADN Mitocondrial/genética , Epigénesis Genética , Femenino , Humanos , Recién Nacido , Embarazo
9.
Mol Biol Rep ; 49(5): 4115-4121, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35359238

RESUMEN

BACKGROUND: DNA isolation from formalin-fixed paraffin-embedded (FFPE) tissues for molecular analysis has become a frequent procedure in cancer research. However, the yield or quality of the isolated DNA is often compromised, and commercial kits are used to overcome this to some extent. METHODS: We developed a new protocol (IARCp) to improve the quality and yield of DNA from FFPE tissues without using any commercial kit. To evaluate the IARCp's performance, we compared the quality and yield of DNA with two commercial kits, namely NucleoSpin® DNA FFPE XS (MN) and QIAamp DNA Micro (QG) isolation kit. RESULTS: Total DNA yield for QG ranged from 120.0 to 282.0 ng (mean 216.5 ng), for MN: 213.6-394.2 ng (mean 319.1 ng), and with IARCp the yield was much higher ranging from 775.5 to 1896.9 ng (mean 1517.8 ng). Moreover, IARCp has also performed well in qualitative assessments by spectrophotometer, fluorometer, and real-time PCR assay. CONCLUSION: Overall, IARCp represents a novel approach to DNA isolation from FFPE which results in good quality and significant amounts of DNA suitable for many downstream genome-wide and targeted molecular analyses. This protocol does not require the use of any commercial kits or phenol for isolating DNA from FFPE tissues, making it suitable to implement in low-resource settings such as low and middle-income countries.


Asunto(s)
ADN , Formaldehído , Genómica , Adhesión en Parafina/métodos , Fijación del Tejido/métodos
10.
J Cell Mol Med ; 25(8): 3912-3921, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33544410

RESUMEN

Breast cancer is a major cause of cancer-related death in women worldwide. Non-coding RNAs are a potential resource to be used as an early diagnostic biomarker for breast cancer. Circular RNAs are a recently identified group of non-coding RNA with a significant role in disease development with potential utility in diagnosis/prognosis in cancer. In this study, we identified 26 differentially expressed circular RNAs associated with early-stage breast cancer. RNA sequencing and two circRNA detection tools (find_circ and DCC) were used to understand the circRNA expression signature in breast cancer. We identified hsa_circ_0006743 (circJMJD1C) and hsa_circ_0002496 (circAPPBP1) to be significantly up-regulated in early-stage breast cancer tissues. Co-expression analysis identified four pairs of circRNA-miRNA (hsa_circ_0023990 : hsa-miR-548b-3p, hsa_circ_0016601 : hsa_miR-1246, hsa_circ_0001946 : hsa-miR-1299 and hsa_circ_0000117:hsa-miR-502-5p) having potential interaction. The miRNA target prediction and network analysis revealed mRNA possibly regulated by circRNAs. We have thus identified circRNAs of diagnostic implications in breast cancer and also observed circRNA-miRNA interaction which could be involved in breast cancer development.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , Neoplasias de la Mama/genética , Femenino , Humanos , Pronóstico , Análisis de Secuencia de ARN , Tasa de Supervivencia
11.
Nucleic Acids Res ; 47(18): 9637-9657, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31410472

RESUMEN

Establishing causal relationship between epigenetic marks and gene transcription requires molecular tools, which can precisely modify specific genomic regions. Here, we present a modular and extensible CRISPR/dCas9-based toolbox for epigenetic editing and direct gene regulation. It features a system for expression of orthogonal dCas9 proteins fused to various effector domains and includes a multi-gRNA system for simultaneous targeting dCas9 orthologs to up to six loci. The C- and N-terminal dCas9 fusions with DNMT3A and TET1 catalytic domains were thoroughly characterized. We demonstrated simultaneous use of the DNMT3A-dSpCas9 and TET1-dSaCas9 fusions within the same cells and showed that imposed cytosine hyper- and hypo-methylation altered level of gene transcription if targeted CpG sites were functionally relevant. Dual epigenetic manipulation of the HNF1A and MGAT3 genes, involved in protein N-glycosylation, resulted in change of the glycan phenotype in BG1 cells. Furthermore, simultaneous targeting of the TET1-dSaCas9 and VPR-dSpCas9 fusions to the HNF1A regulatory region revealed strong and persistent synergistic effect on gene transcription, up to 30 days following cell transfection, suggesting involvement of epigenetic mechanisms in maintenance of the reactivated state. Also, modulation of dCas9 expression effectively reduced off-target effects while maintaining the desired effects on target regions.


Asunto(s)
Sistemas CRISPR-Cas/genética , Epigénesis Genética , Edición Génica/métodos , Transcripción Genética , Aciltransferasas/genética , Dominio Catalítico/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Metiltransferasa 3A , Regulación de la Expresión Génica/genética , Genoma/genética , Glicosilación , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , ARN Guía de Kinetoplastida/genética
12.
Nucleic Acids Res ; 47(19): 10072-10085, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31665742

RESUMEN

Mitochondrial dysfunction plays critical roles in cancer development and related therapeutic response; however, exact molecular mechanisms remain unclear. Recently, alongside the discovery of mitochondrial-specific DNA methyltransferases, global and site-specific methylation of the mitochondrial genome has been described. Investigation of any functional consequences however remains unclear and debated due to insufficient evidence of the quantitative degree and frequency of mitochondrial DNA (mtDNA) methylation. This study uses WGBS to provide the first quantitative report of mtDNA methylation at single base pair resolution. The data show that mitochondrial genomes are extensively methylated predominantly at non-CpG sites. Importantly, these methylation patterns display notable differences between normal and cancer cells. Furthermore, knockdown of DNA methyltransferase enzymes resulted in a marked global reduction of mtDNA methylation levels, indicating these enzymes may be associated with the establishment and/or maintenance of mtDNA methylation. DNMT3B knockdown cells displayed a comparatively pronounced global reduction in mtDNA methylation with concomitant increases in gene expression, suggesting a potential functional link between methylation and gene expression. Together these results demonstrate reproducible, non-random methylation patterns of mtDNA and challenge the notion that mtDNA is lowly methylated. This study discusses key differences in methodology that suggest future investigations must allow for techniques that assess both CpG and non-CpG methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Mitocondrial/genética , Regulación de la Expresión Génica/genética , Animales , Islas de CpG/genética , Humanos , Mitocondrias/genética , ADN Metiltransferasa 3B
13.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445674

RESUMEN

Background: DNA methylation is an epigenetic control mechanism that may be altered by environmental exposures. We have previously reported that in utero exposure to the mycotoxin and liver carcinogen aflatoxin B1 from the maternal diet, as measured using biomarkers in the mothers' blood, was associated with differential DNA methylation in white blood cells of 6-month-old infants from The Gambia. Methods: Here we examined aflatoxin B1-associated differential DNA methylation in white blood cells of 24-month-old children from the same population (n = 244), in relation to the child's dietary exposure assessed using aflatoxin albumin biomarkers in blood samples collected at 6, 12 and 18 months of age. HM450 BeadChip arrays were used to assess DNA methylation, with data compared to aflatoxin albumin adduct levels using two approaches; a continuous model comparing aflatoxin adducts measured in samples collected at 18 months to DNA methylation at 24 months, and a categorical time-dose model that took into account aflatoxin adduct levels at 6, 12 and 18 months, for comparison to DNA methylation at 24 months. Results: Geometric mean (95% confidence intervals) for aflatoxin albumin levels were 3.78 (3.29, 4.34) at 6 months, 25.1 (21.67, 29.13) at 12 months and 49.48 (43.34, 56.49) at 18 months of age. A number of differentially methylated CpG positions and regions were associated with aflatoxin exposure, some of which affected gene expression. Pathway analysis highlighted effects on genes involved with with inflammatory, signalling and growth pathways. Conclusions: This study provides further evidence that exposure to aflatoxin in early childhood may impact on DNA methylation.


Asunto(s)
Aflatoxina B1/efectos adversos , Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Experiencias Adversas de la Infancia , Aflatoxinas/efectos adversos , Aflatoxinas/análisis , Aflatoxinas/sangre , Albúminas/análisis , Preescolar , ADN/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Gambia/epidemiología , Humanos , Lactante , Leucocitos/metabolismo , Masculino
14.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996097

RESUMEN

The histone modifier lysine (K)-specific demethylase 2B (KDM2B) plays a role in the differentiation of hematopoietic cells, and its expression appears to be deregulated in certain cancers of hematological and lymphoid origins. We have previously found that the KDM2B gene is differentially methylated in cell lines derived from Epstein-Barr virus (EBV)-associated endemic Burkitt lymphoma (eBL) compared with that in EBV-negative sporadic Burkitt lymphoma-derived cells. However, whether KDM2B plays a role in eBL development has not been previously investigated. Oncogenic viruses have been shown to hijack the host cell epigenome to complete their life cycle and to promote the transformation process by perturbing cell chromatin organization. Here, we investigated whether EBV alters KDM2B levels to enable its life cycle and promote B-cell transformation. We show that infection of B cells with EBV leads to downregulation of KDM2B levels. We also show that LMP1, one of the main EBV transforming proteins, induces increased DNMT1 recruitment to the KDM2B gene and augments its methylation. By altering KDM2B levels and performing chromatin immunoprecipitation in EBV-infected B cells, we show that KDM2B is recruited to the EBV gene promoters and inhibits their expression. Furthermore, forced KDM2B expression in immortalized B cells led to altered mRNA levels of some differentiation-related genes. Our data show that EBV deregulates KDM2B levels through an epigenetic mechanism and provide evidence for a role of KDM2B in regulating virus and host cell gene expression, warranting further investigations to assess the role of KDM2B in the process of EBV-mediated lymphomagenesis.IMPORTANCE In Africa, Epstein-Barr virus infection is associated with endemic Burkitt lymphoma, a pediatric cancer. The molecular events leading to its development are poorly understood compared with those leading to sporadic Burkitt lymphoma. In a previous study, by analyzing the DNA methylation changes in endemic compared with sporadic Burkitt lymphoma cell lines, we identified several differential methylated genomic positions in the proximity of genes with a potential role in cancer, and among them was the KDM2B gene. KDM2B encodes a histone H3 demethylase already shown to be involved in some hematological disorders. However, whether KDM2B plays a role in the development of Epstein-Barr virus-mediated lymphoma has not been investigated before. In this study, we show that Epstein-Barr virus deregulates KDM2B expression and describe the underlying mechanisms. We also reveal a role of the demethylase in controlling viral and B-cell gene expression, thus highlighting a novel interaction between the virus and the cellular epigenome.


Asunto(s)
Epigénesis Genética , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Herpesvirus Humano 4/fisiología , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Adolescente , Adulto , Linfocitos B/virología , Linfoma de Burkitt/metabolismo , Línea Celular , Niño , Preescolar , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Metilación de ADN , Regulación hacia Abajo , Infecciones por Virus de Epstein-Barr/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Exp Dermatol ; 29(1): 39-50, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31602702

RESUMEN

Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.


Asunto(s)
Metilación de ADN , Melanoma/genética , Melanoma/secundario , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Epigénesis Genética , Proteínas Activadoras de GTPasa/genética , Expresión Génica/genética , Perfilación de la Expresión Génica , Humanos , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Fenotipo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética
16.
Exp Cell Res ; 384(2): 111643, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31557464

RESUMEN

Human hepatocarcinogenesis is a complex process with many unresolved issues, including the cell of origin (differentiated and/or progenitor/stem cells) and the initial steps leading to tumor development. With the aim of providing new tools for studying hepatocellular carcinoma initiation and progression, we developed an innovative model based on primary human hepatocytes (PHHs) lentivirus-transduced with SV40LT+ST, HRASV12 with or without hTERT. The differentiation status of these transduced-PHHs was characterized by RNA sequencing (including lncRNAs), and the expression of some differentiation markers confirmed by RT-qPCR and immunofluorescence. In addition, their transformation capacity was assessed by colony formation in soft agar and tumorigenicity evaluated in immune-deficient mice. The co-expression of SV40LT+ST and HRASV12 in PHHs, in association or not with hTERT, led to the emergence of transformed clones. These clones exhibited a poorly differentiated cell phenotype with expression of stemness and mesenchymal-epithelial transition markers and gave rise to cancer stem cell subpopulations. In vivo, they resulted in poorly differentiated hepatocellular carcinomas with a reactivation of endogenous hTERT. These experiments demonstrate for the first time that non-cycling human mature hepatocytes can be permissive to in vitro transformation. This cellular tool provides the first comprehensive in vitro model for identifying genetic/epigenetic changes driving human hepatocarcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Hepatocitos/patología , Células Madre Neoplásicas/patología , Animales , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Femenino , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
17.
Environ Health ; 19(1): 129, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287817

RESUMEN

BACKGROUND: The IGF2 (insulin-like growth factor 2) and H19 gene cluster plays an important role during pregnancy as it promotes both foetal and placental growth. We investigated the association between cord blood DNA methylation status of the IGF2/H19 gene cluster and maternal fine particulate matter exposure during fetal life. To the best of our knowledge, this is the first study investigating the association between prenatal PM2.5 exposure and newborn DNA methylation of the IGF2/H19. METHODS: Cord blood DNA methylation status of IGF2/H19 cluster was measured in 189 mother-newborn pairs from the ENVIRONAGE birth cohort (Flanders, Belgium). We assessed the sex-specific association between residential PM2.5 exposure during pregnancy and the methylation level of CpG loci mapping to the IGF2/H19 cluster, and identified prenatal vulnerability by investigating susceptible time windows of exposure. We also addressed the biological functionality of DNA methylation level in the gene cluster. RESULTS: Prenatal PM2.5 exposure was found to have genetic region-specific significant association with IGF2 and H19 during specific gestational weeks. The association was found to be sex-specific in both gene regions. Functionality of the DNA methylation was annotated by the association to fetal growth and cellular pathways. CONCLUSIONS: The results of our study provided evidence that prenatal PM2.5 exposure is associated with DNA methylation in newborns' IGF2/H19. The consequences within the context of fetal development of future phenotyping should be addressed.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sangre Fetal/química , Factor II del Crecimiento Similar a la Insulina/genética , Exposición Materna , Intercambio Materno-Fetal , Material Particulado/análisis , ARN Largo no Codificante/genética , Adulto , Contaminación del Aire/análisis , Metilación de ADN , Femenino , Humanos , Recién Nacido , Masculino , Familia de Multigenes , Embarazo , Adulto Joven
19.
Breast Cancer Res ; 21(1): 62, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101124

RESUMEN

BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/-), and time since blood collection (< 5, 5-10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.


Asunto(s)
Neoplasias de la Mama/genética , ADN Tumoral Circulante , Metilación de ADN , ADN de Neoplasias , Epigénesis Genética , Neoplasias de la Mama/sangre , Estudios de Casos y Controles , Islas de CpG , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo
20.
Int J Cancer ; 144(1): 26-33, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098208

RESUMEN

The "delayed infection hypothesis" states that a paucity of infections in early childhood may lead to higher risks of childhood leukemia (CL), especially acute lymphoblastic leukemia (ALL). Using prospectively collected data from six population-based birth cohorts we studied the association between birth order (a proxy for pathogen exposure) and CL. We explored whether other birth or parental characteristics modify this association. With 2.2 × 106 person-years of follow-up, 185 CL and 136 ALL cases were ascertained. In Cox proportional hazards models, increasing birth order (continuous) was inversely associated with CL and ALL; hazard ratios (HR) = 0.88, 95% confidence interval (CI): (0.77-0.99) and 0.85: (0.73-0.99), respectively. Being later-born was associated with similarly reduced hazards of CL and ALL compared to being first-born; HRs = 0.78: 95% CI: 0.58-1.05 and 0.73: 0.52-1.03, respectively. Successive birth orders were associated with decreased CL and ALL risks (P for trend 0.047 and 0.055, respectively). Multivariable adjustment somewhat attenuated the associations. We found statistically significant and borderline interactions between birth weight (p = 0.024) and paternal age (p = 0.067), respectively, in associations between being later-born and CL, with the lowest risk observed for children born at <3 kg with fathers aged 35+ (HR = 0.18, 95% CI: 0.06-0.50). Our study strengthens the theory that increasing birth order confers protection against CL and ALL risks, but suggests that this association may be modified among subsets of children with different characteristics, notably advanced paternal age and lower birth weight. It is unclear whether these findings can be explained solely by infectious exposures.


Asunto(s)
Orden de Nacimiento , Peso al Nacer , Edad Paterna , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Adulto , Niño , Preescolar , Estudios de Cohortes , Humanos , Análisis Multivariante , Modelos de Riesgos Proporcionales , Sistema de Registros/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA