Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(6): 3452-3458, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-31939654

RESUMEN

MgNi2Bi4 was grown from the reaction of magnesium and nickel in excess bismuth flux. It forms as large, malleable crystals with a new structure type in orthorhombic space group Cmcm. The structure contains a building block common to Ni-Bi binary phases-nickel zigzag chains running along one direction and surrounded by bismuth. Magnetic susceptibility and transport measurements indicate that the compound is metallic; this is supported by calculations of density of states. Crystal orbital Hamilton population analyses indicate that Ni-Bi interactions are the strongest bonding interactions in the structure, whereas Bi-Bi bonding between the layers is negligible, making MgNi2Bi4 a potential two-dimensional material.

2.
Inorg Chem ; 59(16): 11651-11657, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799481

RESUMEN

La15(FeC6)4H was synthesized from the reaction of iron and anthracene in La/Ni eutectic flux. Anthracene was the source of both the carbon and hydrogen in the product. The structure of this metal carbide hydride features hydride ions in tetrahedral interstitial sites surrounded by lanthanum ions, which was confirmed by single-crystal neutron diffraction studies. The trigonal planar FeC6 units in which the central iron atom is coordinated by three ethylenide groups are similar to those found in La3.67FeC6, a previously reported compound that is formed in the absence of a hydride source. Magnetic susceptibility data confirm that the iron sites do not have magnetic moments. Density of states calculations indicate that La15(FeC6)4H is metallic and is stabilized by the incorporation of hydride anions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA