Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Sci ; 133(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350068

RESUMEN

Basal bodies (BBs) are microtubule-based organelles that act as a template for and stabilize cilia at the cell surface. Centrins ubiquitously associate with BBs and function in BB assembly, maturation and stability. Human POC5 (hPOC5) is a highly conserved centrin-binding protein that binds centrins through Sfi1p-like repeats and is required for building full-length, mature centrioles. Here, we use the BB-rich cytoskeleton of Tetrahymena thermophila to characterize Poc5 BB functions. Tetrahymena Poc5 (TtPoc5) uniquely incorporates into assembling BBs and is then removed from mature BBs prior to ciliogenesis. Complete genomic knockout of TtPOC5 leads to a significantly increased production of BBs, yet a markedly reduced ciliary density, both of which are rescued by reintroduction of TtPoc5. A second Tetrahymena POC5-like gene, SFR1, is similarly implicated in modulating BB production. When TtPOC5 and SFR1 are co-deleted, cell viability is compromised and BB overproduction is exacerbated. Overproduced BBs display defective transition zone formation and a diminished capacity for ciliogenesis. This study uncovers a requirement for Poc5 in building mature BBs, providing a possible functional link between hPOC5 mutations and impaired cilia.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cuerpos Basales , Tetrahymena thermophila , Proteínas Portadoras , Centriolos/genética , Cilios/genética , Humanos , Microtúbulos , Tetrahymena thermophila/genética
2.
Dev Biol ; 362(2): 141-53, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22182519

RESUMEN

The morphogen Sonic hedgehog, one of the Hedgehog (Hh) family of secreted proteins, plays a key role in patterning the mammalian spinal cord along its dorsoventral (D/V) axis through the activation of Glioma-associated oncogene (Gli) family of transcription factors. Suppressor of Fused (Sufu), a Gli-interacting protein, modulates the D/V patterning of the spinal cord by antagonizing Hh signaling. The molecular mechanisms underlying the function of Sufu in Hh pathway activation and spinal cord D/V patterning remain controversial, particularly in light of recent findings that Sufu protects Gli2 and Gli3 proteins from proteasomal degradation. In the current study, we show that Hh pathway activation and dorsal expansion of ventral spinal cord cell types in the absence of Sufu depend on the activator activities of all three Gli family proteins. We also show that Sufu plays a positive role in the maximal activation of Hh signaling that defines the ventral-most cell fate in the mammalian spinal cord, likely through protecting Gli2 and Gli3 proteins from degradation. Finally, by altering the level of Gli3 repressor on a background of reduced Gli activator activities, we reveal an important contribution of Gli3 repressor activity to the Hh pathway activation and the D/V patterning of the spinal cord.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Médula Espinal/embriología , Activación Transcripcional/fisiología , Animales , Western Blotting , Galactósidos , Inmunohistoquímica , Hibridación in Situ , Indoles , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Activación Transcripcional/genética , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
3.
Dev Dyn ; 240(8): 1938-48, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21761479

RESUMEN

PCP effector proteins Inturned (Intu) and Fuzzy (Fuz) play important roles in mammalian neural development and ciliogenesis, but the developmental defects in Intu and Fuz mutants are not the same as those with the complete loss of cilia. Furthermore, it remains unclear whether mouse Intu and Fuz play a role in convergent extension, a process regulated by PCP signaling. In the current study, we show that the functions of both Intu and Fuz in neural tube patterning are dependent on the presence of cilia. We further show that neither gene exhibits obvious genetic interaction with the core PCP regulator Vangl2 in convergent extension or patterning of the neural tube. Finally, we show in Intu; Fuz double mutants that the lack of convergent extension and more severe patterning defects in Intu and Fuz mutants does not result from a functional redundancy between these two proteins.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Morfogénesis/fisiología , Tubo Neural/anatomía & histología , Tubo Neural/fisiología , Animales , Cilios/fisiología , Proteínas del Citoesqueleto , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurulación , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Mol Biol Cell ; 32(21): br8, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406789

RESUMEN

The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.


Asunto(s)
Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Movimiento Celular/fisiología , Cilios/metabolismo , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Flagelos/metabolismo , Proteínas de Microtúbulos/fisiología , Microtúbulos/fisiología , Estabilidad Proteica , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Tetrahymena/metabolismo
5.
Dev Dyn ; 238(12): 3035-42, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19877275

RESUMEN

Precise planar cell polarity (PCP) is critical for the development of multiple organ systems in animals. A group of core-PCP proteins are recognized to play crucial roles in convergent extension and other PCP-related processes in mammals. However, the functions of another group of PCP-regulating proteins, the PCP-effector proteins, are yet to be fully studied. In this study, the generation and characterization of a mouse mutant for the PCP effector gene Fuzzy (Fuz) is reported. Fuz homozygous mutants are embryonically lethal, with multiple defects including neural tube defects, abnormal dorsal/ventral patterning of the spinal cord, and defective anterior/posterior patterning of the limb buds. Fuz mutants also exhibit abnormal Hedgehog (Hh) signaling and inefficient proteolytic processing of Gli3. Finally, a significant decrease in cilia was found in Fuz homozygous mutants. In conclusion, Fuz plays an important role in cilia formation, Hh signal transduction, and embryonic development in mammals.


Asunto(s)
Polaridad Celular/genética , Cilios/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Animales , Tipificación del Cuerpo/genética , Células Cultivadas , Cilios/metabolismo , Cilios/fisiología , Proteínas del Citoesqueleto , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Proteínas Hedgehog/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Embarazo , Transducción de Señal/genética , Médula Espinal/anomalías
6.
Curr Opin Cell Biol ; 55: 139-149, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30138887

RESUMEN

Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.


Asunto(s)
Cilios/metabolismo , Orgánulos/metabolismo , Animales , Humanos , Mapas de Interacción de Proteínas , Proteómica , Factores de Tiempo
7.
mSphere ; 1(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27904881

RESUMEN

Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin's roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA