Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 146(13): 9347-9355, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520392

RESUMEN

Tuning the photophysical properties of iron-based transition-metal complexes is crucial for their employment as photosensitizers in solar energy conversion. For the optimization of these new complexes, a detailed understanding of the excited-state deactivation paths is necessary. Here, we report femtosecond transient mid-IR spectroscopy data on a recently developed octahedral ligand-field enhancing [Fe(dqp)2]2+ (C1) complex with dqp = 2,6-diquinolylpyridine and prototypical [Fe(bpy)3]2+ (C0). By combining mid-IR spectroscopy with quantum chemical DFT calculations, we propose a method for disentangling the 5Q1 and 3T1 multiplicities of the long-lived metal-centered (MC) states, applicable to a variety of metal-organic iron complexes. Our results for C0 align well with the established assignment toward the 5Q1, validating our approach. For C1, we find that deactivation of the initially excited metal-to-ligand charge-transfer state leads to a population of a long-lived MC 5Q1 state. Analysis of transient changes in the mid-IR shows an ultrafast sub 200 fs rearrangement of ligand geometry for both complexes, accompanying the MLCT → MC deactivation. This confirms that the flexibility in the ligand sphere supports the stabilization of high spin states and plays a crucial role in the MLCT lifetime of metal-organic iron complexes.

2.
Photochem Photobiol Sci ; 22(4): 919-930, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653574

RESUMEN

Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state. Cph1 phytochrome shows a photoisomerization of its phycocyanobilin (PCB) chromophore in the Pfr state with a time constant of 0.7 ps. The dynamics of the PCB chromophore has been described, but whether or not the apoprotein exhibits an ultrafast response too, is not known. Here, we compare the photoreaction of 13C/15N labeled apoprotein with unlabeled apoprotein to unravel ultrafast apoprotein dynamics in Cph1. In the spectral range from 1750 to 1620 cm-1 we assigned several signals due to ultrafast apoprotein dynamics. A bleaching signal at 1724 cm-1 is tentatively assigned to deprotonation of a carboxylic acid, probably Asp207, and signals around 1670 cm-1 are assigned to amide I vibrations of the capping helix close to the chromophore. These signals remain after photoisomerization. The apoprotein dynamics appear upon photoexcitation or concomitant with chromophore isomerization. Thus, apoprotein dynamics occur prior to and after photoisomerization on an ultrafast time-scale. We discuss the origin of the ultrafast apoprotein response with the 'Coulomb hammer' mechanism, i.e. an impulsive change of electric field and Coulombic force around the chromophore upon excitation.


Asunto(s)
Fitocromo , Fitocromo/metabolismo , Luz , Apoproteínas , Proteínas Bacterianas/metabolismo
3.
Biochemistry ; 59(9): 1023-1037, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32073262

RESUMEN

Phytochromes are biological photoswitches that interconvert between two parent states (Pr and Pfr). The transformation is initiated by photoisomerization of the tetrapyrrole chromophore, followed by a sequence of chromophore and protein structural changes. In the last step, a phytochrome-specific peptide segment (tongue) undergoes a secondary structure change, which in prokaryotic phytochromes is associated with the (de)activation of the output module. The focus of this work is the Pfr-to-Pr photoconversion of the bathy bacteriophytochrome Agp2 in which Pfr is the thermodynamically stable state. Using spectroscopic techniques, we studied the structural and functional consequences of substituting Arg211, Tyr165, His278, and Phe192 close to the biliverdin (BV) chromophore. In Pfr, substitutions of these residues do not affect the BV structure. The characteristic Pfr properties of bathy phytochromes, including the protonated propionic side chain of ring C (propC) of BV, are preserved. However, replacing Arg211 or Tyr165 blocks the photoconversion in the Meta-F state, prior to the secondary structure transition of the tongue and without deprotonation of propC. The Meta-F state of these variants displays low photochemical activity, but electronic excitation causes ultrafast alterations of the hydrogen bond network surrounding the chromophore. In all variants studied here, thermal back conversion from the photoproducts to Pfr is decelerated but substitution of His278 or Phe192 is not critical for the Pfr-to-Pr photoconversion. These variants do not impair deprotonation of propC or the α-helix/ß-sheet transformation of the tongue during the Meta-F-to-Pr decay. Thus, we conclude that propC deprotonation is essential for restructuring of the tongue.


Asunto(s)
Biliverdina/metabolismo , Fitocromo/química , Fitocromo/ultraestructura , Agrobacterium tumefaciens , Proteínas Bacterianas/química , Enlace de Hidrógeno , Luz , Fitocromo/fisiología , Protones , Espectrometría Raman/métodos , Tetrapirroles/química , Tetrapirroles/metabolismo
4.
Molecules ; 25(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075128

RESUMEN

Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.


Asunto(s)
Channelrhodopsins/química , Modelos Moleculares , Conformación Proteica , Rodopsina/química , Channelrhodopsins/ultraestructura , Chlamydomonas/química , Isomerismo , Luz , Simulación de Dinámica Molecular , Protones , Teoría Cuántica , Rodopsina/ultraestructura , Análisis Espectral
5.
J Am Chem Soc ; 141(30): 11730-11738, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31251876

RESUMEN

Propelling a ground state reaction by mode-specific vibrational excitation via infrared (IR) light offers a novel route to carry out ground state chemistry. Here, we describe the acceleration of a bimolecular alcoholysis reaction as a paradigm for IR light-driven ground state reactions. Instead of resorting to coherent control, IR light is used for direct or indirect vibrational excitation of the reaction coordinate (RC) overcoming the activation energy and promoting the ground state reaction with negligible heating of the sample. Thus, knowledge of the RC is crucial to pick the reaction accelerating vibrations. Alternatively, upon mapping the reaction accelerating vibrations an image of the RC can be reconstructed. We discuss the concept of RCs and examine strategies to use vibrational energy relaxation pathways to single out vibrations belonging to the RC. The influence of the solvent interaction and limitations due to conformational heterogeneity are considered. We provide an application example generating microstructures of polymers and address the use for chemical synthesis in general.

6.
Inorg Chem ; 58(24): 16372-16378, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31747261

RESUMEN

A proximity enforcing diarylsilane ligand is reported, which gives rise to unusual Si-H···M interactions with the d10 metal ions Cu+ and Ag+ upon complexation. These interactions are studied in detail both experimentally and computationally and can be classified to be weakly agostic in nature for the Si-H···Cu interaction. The Si-H···Ag interaction has more signatures of an electrostatic contact.

7.
Molecules ; 22(7)2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703762

RESUMEN

Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V)-trans-difluoride (Sb-tpfc-F2). Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.


Asunto(s)
Antimonio/química , Porfirinas/química , Tetrapirroles/química , Fluorescencia , Luz , Teoría Cuántica
8.
Chemphyschem ; 17(3): 369-74, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26630441

RESUMEN

Phytochromes are protein-based photoreceptors harboring a bilin-based photoswitch in the active site. The timescale of photosignaling via C15 =C16 E-to-Z photoisomerization has been ambiguous in the far-red-absorbing Pfr state. Here we present a unified view of the structural events in phytochrome Cph1 post excitation with femtosecond precision, obtained via stimulated Raman and polarization-resolved transient IR spectroscopy. We demonstrate that photoproduct formation occurs within 700 fs, determined by a two-step partitioning process initiated by a planarization on the electronic excited state with a 300 fs time scale. The ultrafast isomerization timescale for Pfr -to-Pr conversion highlights the active role of the nonbonding methyl-methyl clash initiating the reaction in the excited state. We envision that our results will motivate the synthesis of new artificial photoswitches with precisely tuned non-bonded interactions for ultrafast response.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Pigmentos Biliares/química , Pigmentos Biliares/efectos de la radiación , Procesos Fotoquímicos , Fitocromo/química , Fitocromo/efectos de la radiación , Proteínas Quinasas/química , Proteínas Quinasas/efectos de la radiación , Fotorreceptores Microbianos , Estereoisomerismo , Factores de Tiempo
9.
Structure ; 32(6): 650-651, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848681

RESUMEN

In a recent issue of Nature, Barends et al.1 studied the photodissociation of carboxymyoglobin with ultrafast laser pump-probe serial femtosecond crystallography experiments. They observed significant differences in heme protein structural dynamics for biologically relevant 1-photon excitation relative to high excitation leading to the absorption of several photons per heme.


Asunto(s)
Mioglobina , Mioglobina/química , Conformación Proteica , Hemo/química , Cristalografía por Rayos X , Luz , Fotones , Modelos Moleculares
10.
Biophys J ; 105(8): 1756-66, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24138851

RESUMEN

Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump-IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Electrones , Sondas Moleculares/metabolismo , Fitocromo/metabolismo , Absorción , Espectrofotometría Infrarroja , Factores de Tiempo , Vibración
11.
J Am Chem Soc ; 134(3): 1408-11, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22229806

RESUMEN

Photoisomerization of a protein bound chromophore is the basis of the light sensing and signaling responses of many photoreceptors. Z-to-E photoisomerization of the Pr Cph1Δ2 phytochrome has been investigated by polarization resolved femtosecond visible pump-infrared probe spectroscopy, which yields structural information on the Pr excited (Pr*), Pr ground, and lumi-R product states. By exhaustive search analysis, two photoreaction time constants of (4.7 ± 1.4) and (30 ± 5) ps were found. Ring D orientational change in the electronic excited state to the transition state (90° twist) has been followed in real-time. Rotation of ring D takes place in the electronically excited state with a time constant of 30 ± 5 ps. The photoisomerization is best explained by a single rotation around C(15)═C(16) methine bridge in the Pr* state and a diffusive interaction with its protein surrounding.


Asunto(s)
Fitocromo/química , Synechocystis/química , Isomerismo , Modelos Moleculares , Procesos Fotoquímicos , Espectrofotometría Infrarroja
12.
J Phys Chem A ; 116(3): 1023-9, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22201283

RESUMEN

We combine femtosecond polarization resolved VIS-pump IR-probe spectroscopy with DFT and TD-DFT calculations to identify and assign absorption bands to electronic transitions for corroles. These macrocycles and their corresponding metal complexes are receiving great attention because of their utility in many fields, while many of their spectroscopic features have not yet been fully described. Analysis of the perturbed free induction decay provides information about the bleaching signal at time zero and allows for determination of overlapping excited state and bleaching signal amplitudes. The S(0) → S(1) and S(0) → S(2) transitions in the Q-band of the hexacoordinated Al(tpfc)(py)(2) and Br(8)Al(tpfc)(py)(2) absorption spectra are explicitly assigned. Angles between these electronic transition dipole moments (tdms) with a single vibrational transition dipole moment of (53 ± 2)° and (34 ± 2)° when excited at 580 and 620 nm for hexacoordinated Al(tpfc)(py)(2) and (51 ± 2)° and (43 ± 2)° when excited at 590 and 640 nm for hexacoordinated Br(8)Al(tpfc)(py)(2) were determined. The relative angles between the two lowest electronic tdms are (90 ± 8)° and (94 ± 3)° for Al(tpfc)(py)(2) and Br(8)Al(tpfc)(py)(2), respectively. Angles are determined before time zero by polarization resolved perturbed free induction decay and after time zero by polarization resolved transients. Comparison of corrole's wave functions with those of porphine show that the reduced symmetry in the corrole molecules results in lifting of Q-band degeneracy and major reorientation of the electronic transition dipole moments within the molecular scaffold. This information is necessary in designing optimal corrole-based electron and energy transfer complexes.

13.
J Phys Chem B ; 126(3): 581-587, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35026113

RESUMEN

Studies on photoreceptors provide a wealth of information on cofactor and protein dynamics on the microsecond to seconds time-scale. Up to now, ultrafast dynamics addresses mainly the cofactor or chromophore, but ultrafast protein dynamics are poorly understood. Increasing evidence show that protein responses can occur even faster than the cofactor dynamics. The causal reason for the ultrafast protein response cannot be explained by the localized cofactor excitation or its excited-state decay, alone. We propose a Coulomb interaction mechanism started by a shock wave and stabilized by a dipole moment change at least partially responsible for coherent oscillations in proteins, protonation changes, water dislocations, and protein changes prior to and beyond chromophore's excited-state decay. Photoexcitation changes the electron density distribution of the chromophore within a few femtoseconds: The Coulomb shock wave affects polar groups, hydrogen bonds, and protein bound water molecules. The process occurs on a time-scale even faster than excited-state decay of the chromophore. We discuss studies on selected photoreceptors in light of this mechanism and its impact on a detailed understanding of protein dynamics.


Asunto(s)
Proteínas , Agua , Enlace de Hidrógeno , Agua/química
14.
Chem Sci ; 13(42): 12426-12432, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36382286

RESUMEN

Chlorophyll a (Chl a) belongs to the most important and most investigated molecules in the field of photosynthesis. The Q-band absorption is central for energy transfer in photosystems and the relative orientation of the Q y transitions of interacting chlorophylls governs the energy transfer. Chl a was well investigated, but a quantitative separation of Q x and Q y contributions to the Q-band of the Chl a absorption spectrum is still missing. We use femtosecond Vis-pump - IR-probe anisotropy excitation spectroscopy to disentangle the overlapping electronic Q x and Q y contributions quantitatively. In an anisotropy excitation spectrum we trace the dichroic ratio of a single vibration, i.e. the keto C[double bond, length as m-dash]O stretching vibration at 1690 cm-1, as a function of excitation wavelength. The change in dichroic ratio reflects altering Q y and Q x contributions. We identified Q x00 (0-0 transition of Q x ) and Q x01 transition at (636 ± 1) nm and (607 ± 2) nm, respectively, and the Q y01 and Q y02 at (650 ± 6) nm, and (619 ± 3) nm, respectively. We find that Q x absorption, contributes to 50% to 72% at 636 nm and 49% to 71% at 606 nm to the Chl a absorption at room temperature. The Q band was well modelled by a single vibronic progression for the Q x and Q y transition of (700 ± 100) cm-1, and the energy gap between Q x00 and Q y00 was found to be (820 ± 60) cm-1. This precise description of the hexa-coordinated Chl a absorption spectrum will foster more accurate calculations on energy transfer processes in photosystems, and advance the detailed understanding of the intricate interaction of chlorophyll molecules with the solvent.

15.
Nat Chem ; 14(7): 823-830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35577919

RESUMEN

The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.


Asunto(s)
Fitocromo , Proteínas Bacterianas , Biliverdina/química , Biliverdina/metabolismo , Enlace de Hidrógeno , Isomerismo , Fitocromo/química , Fitocromo/metabolismo , Protones
16.
Phys Chem Chem Phys ; 13(19): 8723-32, 2011 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-21331386

RESUMEN

The dual photochemistry of anthracene-9,10-endoperoxide (APO) was investigated in a fs UV pump-supercontinuum probe experiment, along with anthracene (AC) and anthraquinone (AQ) for comparison. Excitation of APO at 282 nm leads to 100% product formation by two competing photoreaction channels. Cycloreversion generates with a ∼25% quantum yield (QY) (1)O(2) and AC vibrationally excited in the singlet electronic ground state (hot AC). 1-2% of the AC is generated in the lowest triplet state, but no AC is generated in electronically excited singlet states. Generation and cooling of hot AC are modeled using solution phase and broadened gas-phase AC absorption spectra at various temperatures. Results indicate ultrafast generation of hot AC within 3 ps, much faster than reported before for derivatives of anthracene endoperoxide, and subsequent cooling with an 18 ps time constant. The homolytic O-O cleavage pathway generates a biradical, which converts into electronically excited diepoxide (DE). Our data indicate a 1.5 ps time constant that we tentatively assign to the biradical decay and DE formation. Cooling of DE in this electronically excited state takes place with a ∼21 ps time constant. Excitation of AQ at 266 nm is followed by an ultrafast population of the T(1)(nπ*) triplet state of AQ with a time constant of (160 ± 60) fs.


Asunto(s)
Antracenos/química , Antracenos/síntesis química , Estructura Molecular , Fotoquímica , Teoría Cuántica , Espectrofotometría Ultravioleta , Factores de Tiempo
17.
J Phys Chem B ; 125(37): 10571-10577, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34506146

RESUMEN

Photoinduced electron transfer systems can mimic certain features of natural photosynthetic reaction centers, which are crucial for solar energy production. Among other tetra-pyrroles, the versatile chemical and photophysical properties of corroles make them very promising donors applicable in donor-acceptor complexes. Here, we present a first comprehensive study of ultrafast photoinduced electron transfer in a self-assembling sulfonated aluminum corrole-methylviologen complex combining visible and mid-IR transient absorption spectroscopy. The noncovalent D-A association of the corrole-methylviologen complex has the great advantage that photoinduced charge separation becomes possible even though the back electron transfer (BET) rate is large. Initial forward electron transfer from corrole to methylviologen is observed on an ∼130 fs time scale. Subsequent back electron transfer takes place with τBET = (1.8 ± 0.5) ps, revealing very complex relaxation dynamics. Direct probing in the mid-IR allows us to unravel the back electron transfer and cooling dynamics/electronic reorganization. Upon tracing the dynamics of the methylviologen-radical marker band at 1640 cm-1 and the C═C stretching of corrole at around 1500 cm-1, we observe that large amounts of excess energy survive the back transfer, leading to the formation of hot ground state absorption. A closer examination of the signal after 300 ps, surviving the back transfer, exhibits a charge-separation yield of 10-15%.


Asunto(s)
Aluminio , Electrones , Transporte de Electrón , Paraquat , Porfirinas
18.
Chemphyschem ; 11(6): 1283-8, 2010 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-20340121

RESUMEN

A new mixed experimental and theoretical approach for determining the exact three-dimensional orientation of electronic transition dipole moments (tdms) within the molecular frame is discussed. Results of applying this method on Chlorophyll a and the dye Coumarin 314 (C314) are presented. For C314 the possible influence of a mixture of E- and Z-isomers in the sample on the determined electronic tdm is investigated. Moreover, the robustness of the method is investigated with the C314 data.

19.
Ann Surg ; 250(1): 119-25, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19561474

RESUMEN

OBJECTIVE: To validate the LiMAx test, a new bedside test for the determination of maximal liver function capacity based on C-methacetin kinetics. To investigate the diagnostic performance of different liver function tests and scores including the LiMAx test for the prediction of postoperative outcome after hepatectomy. SUMMARY BACKGROUND DATA: Liver failure is a major cause of mortality after hepatectomy. Preoperative prediction of residual liver function has been limited so far. METHODS: Sixty-four patients undergoing hepatectomy were analyzed in a prospective observational study. Volumetric analysis of the liver was carried out using preoperative computed tomography and intraoperative measurements. Perioperative factors associated with morbidity and mortality were analyzed. Cutoff values of the LiMAx test were evaluated by receiver operating characteristic. RESULTS: Residual LiMAx demonstrated an excellent linear correlation with residual liver volume (r = 0.94, P < 0.001) after hepatectomy. The multivariate analysis revealed LiMAx on postoperative day 1 as the only predictor of liver failure (P = 0.003) and mortality (P = 0.004). AUROC for the prediction of liver failure and liver failure related death by the LiMAx test was both 0.99. Preoperative volume/function analysis combining CT volumetry and LiMAx allowed an accurate calculation of the remnant liver function capacity prior to surgery (r = 0.85, P < 0.001). CONCLUSIONS: Residual liver function is the major factor influencing the outcome of patients after hepatectomy and can be predicted preoperatively by a combination of LiMAx and CT volumetry.


Asunto(s)
Acetamidas/farmacocinética , Hepatectomía , Indicadores y Reactivos/farmacocinética , Fallo Hepático/diagnóstico , Neoplasias Hepáticas/cirugía , Hígado/fisiopatología , Acetamidas/administración & dosificación , Anciano , Pruebas Respiratorias , Femenino , Hepatectomía/efectos adversos , Humanos , Indicadores y Reactivos/administración & dosificación , Fallo Hepático/etiología , Neoplasias Hepáticas/fisiopatología , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Recuperación de la Función , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
20.
J Phys Chem A ; 113(22): 6289-96, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19435357

RESUMEN

The wavelength dependence of the photochemistry of anthracene-9,10-endoperoxide (APO) in acetonitrile was quantitatively investigated at 5 degrees C, with excitation varied from 240 to 450 nm. Anthracene (AC) and a diepoxide (DE) were identified as the main primary photoproducts. After short exposure times DE was at all wavelengths the dominating photoproduct, while AC was only formed for lambda

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA