Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 17(5): 2757-2764, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28384403

RESUMEN

We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.


Asunto(s)
Nanocables/química , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Humanos , Dispositivos Laboratorio en un Chip , Ratones , Microelectrodos , Células-Madre Neurales/citología , Neuronas/citología , Tamaño de la Partícula , Ratas
2.
Stem Cell Reports ; 17(9): 2141-2155, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35985330

RESUMEN

Impairment of long-term potentiation (LTP) is a common feature of many pre-clinical models of neurological disorders; however, studies in humans are limited by the inaccessibility of the brain. Human induced pluripotent stem cells (hiPSCs) provide a unique opportunity to study LTP in disease-specific genetic backgrounds. Here we describe a multi-electrode array (MEA)-based assay to investigate chemically induced LTP (cLTP) across entire networks of hiPSC-derived midbrain dopaminergic (DA) and cortical neuronal populations that lasts for days, allowing studies of the late phases of LTP and enabling detection of associated molecular changes. We show that cLTP on midbrain DA neuronal networks is largely independent of the N-methyl-D-aspartate receptor (NMDAR) and partially dependent on brain-derived neurotrophic factor (BDNF). Finally, we describe activity-regulated gene expression induced by cLTP. This cLTP-MEA assay platform will enable phenotype discovery and higher-throughput analyses of synaptic plasticity on hiPSC-derived neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciación a Largo Plazo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA