RESUMEN
Flash flood is one of the most dangerous hydrologic and natural phenomena and is considered as the top ranking of such events among various natural disasters due to their fast onset characteristics and the proportion of individual fatalities. Mapping the probability of flash flood events remains challenges because of its complexity and rapid onset of precipitation. Thus, this study aims to propose a state-of-the-art data mining approach based on a hybrid equilibrium optimized SysFor, namely, the HE-SysFor model, for spatial prediction of flash floods. A tropical storm region located in the Northwest areas of Vietnam is selected as a case study. For this purpose, 1866 flash-flooded locations and ten indicators were used. The results show that the proposed HE-SysFor model yielded the highest predictive performance (total accuracy = 93.8%, Kappa index = 0.875, F1-score = 0.939, and AUC = 0.975) and produced the better performance than those of the C4.5 decision tree (C4.5), the radial basis function-based support vector machine (SVM-RBF), the logistic regression (LReg), and deep learning neural network (DeepLNN) models in both the training and the testing phases. Among the ten indicators, elevation, slope, and land cover are the most important. It is concluded that the proposed model provides an alternative tool and may help for effectively monitoring flash floods in tropical areas and robust policies for decision making in mitigating the flash flood impacts.
Asunto(s)
Tormentas Ciclónicas , Inundaciones , Minería de Datos , Ríos , VietnamRESUMEN
Mangrove forests provide vital ecosystem services. The increasing threats to mangrove forest extent and fragmentation can be monitored from space. Accurate spatially explicit quantification of key vegetation characteristics of mangroves, such as leaf area index (LAI), would further advance our monitoring efforts to assess ecosystem health and functioning. Here, we investigated the potential of radiative transfer models (RTM), combined with active learning (AL), to estimate LAI from Sentinel-2 spectral reflectance in the mangrove-dominated region of Ngoc Hien, Vietnam. We validated the retrieval of LAI estimates against in-situ measurements based on hemispherical photography and compared against red-edge NDVI and the Sentinel Application Platform (SNAP) biophysical processor. Our results highlight the performance of physics-based machine learning using Gaussian processes regression (GPR) in combination with AL for the estimation of mangrove LAI. Our AL-driven hybrid GPR model substantially outperformed SNAP (R2 = 0.77 and 0.44 respectively) as well as the red-edge NDVI approach. Comparing two canopy RTMs, the highest accuracy was achieved by PROSAIL (RMSE = 0.13 m2.m-2, NRMSE = 9.57%, MAE = 0.1 m2.m-2). The successful retrieval of mangrove LAI from Sentinel-2 can overcome extensive reliance on scarce in-situ measurements for training seen in other approaches and present a more scalable applicability by relying on the universal principles of physics in combination with uncertainty estimates. AL-based GPR models using RTM simulations allow us to adapt the genericity of RTMs to the peculiarities of distinct ecosystems such as mangrove forests with limited ancillary data. These findings bode potential for retrieving a wider range of vegetation variables to quantify large-scale mangrove ecosystem dynamics in space and time.
RESUMEN
This research proposes and evaluates a new approach for flash flood susceptibility mapping based on Deep Learning Neural Network (DLNN)) algorithm, with a case study at a high-frequency tropical storm area in the northwest mountainous region of Vietnam. Accordingly, a DLNN structure with 192 neurons in 3 hidden layers was proposed to construct an inference model that predicts different levels of susceptibility to flash flood. The Rectified Linear Unit (ReLU) and the sigmoid were selected as the activate function and the transfer function, respectively, whereas the Adaptive moment estimation (Adam) was used to update and optimize the weights of the DLNN. A database for the study area, which includes factors of elevation, slope, curvature, aspect, stream density, NDVI, soil type, lithology, and rainfall, was established to train and validate the proposed model. Feature selection was carried out for these factors using the Information gain ratio. The results show that the DLNN attains a good prediction accuracy with Classification Accuracy Rateâ¯=â¯92.05%, Positive Predictive Valueâ¯=â¯94.55% and Negative Predictive Valueâ¯=â¯89.55%. Compared to benchmarks, Multilayer Perceptron Neural Network and Support Vector Machine, the DLNN performs better; therefore, it could be concluded that the proposed hybridization of GIS and deep learning can be a promising tool to assist the government authorities and involving parties in flash flood mitigation and land-use planning.