Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 628(8009): 894-900, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600380

RESUMEN

Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpinski triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.


Asunto(s)
Citrato (si)-Sintasa , Evolución Molecular , Fractales , Multimerización de Proteína , Synechococcus , Microscopía por Crioelectrón , Modelos Moleculares , Synechococcus/enzimología , Citrato (si)-Sintasa/química , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/ultraestructura
2.
Nature ; 588(7838): 503-508, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299178

RESUMEN

Most proteins assemble into multisubunit complexes1. The persistence of these complexes across evolutionary time is usually explained as the result of natural selection for functional properties that depend on multimerization, such as intersubunit allostery or the capacity to do mechanical work2. In many complexes, however, multimerization does not enable any known function3. An alternative explanation is that multimers could become entrenched if substitutions accumulate that are neutral in multimers but deleterious in monomers; purifying selection would then prevent reversion to the unassembled form, even if assembly per se does not enhance biological function3-7. Here we show that a hydrophobic mutational ratchet systematically entrenches molecular complexes. By applying ancestral protein reconstruction and biochemical assays to the evolution of steroid hormone receptors, we show that an ancient hydrophobic interface, conserved for hundreds of millions of years, is entrenched because exposure of this interface to solvent reduces protein stability and causes aggregation, even though the interface makes no detectable contribution to function. Using structural bioinformatics, we show that a universal mutational propensity drives sites that are buried in multimeric interfaces to accumulate hydrophobic substitutions to levels that are not tolerated in monomers. In a database of hundreds of families of multimers, most show signatures of long-term hydrophobic entrenchment. It is therefore likely that many protein complexes persist because a simple ratchet-like mechanism entrenches them across evolutionary time, even when they are functionally gratuitous.


Asunto(s)
Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Sitios de Unión/genética , ADN/metabolismo , Humanos , Ligandos , Modelos Moleculares , Complejos Multiproteicos/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Agregado de Proteínas , Dominios Proteicos , Multimerización de Proteína/genética , Estabilidad Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Solventes/química
3.
Nature ; 581(7809): 480-485, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461643

RESUMEN

Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Asunto(s)
Evolución Molecular , Hemoglobinas/metabolismo , Regulación Alostérica , Sitios de Unión/genética , Hemo/metabolismo , Hemoglobinas/química , Humanos , Hierro/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
4.
Nature ; 583(7816): E26, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32587402

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 569(7756): 438-442, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068697

RESUMEN

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Asunto(s)
Oro/química , Proteínas/química , Microscopía por Crioelectrón , Cisteína/química , Mercurio/química , Modelos Moleculares , Proteínas/ultraestructura
6.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37318336

RESUMEN

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Asunto(s)
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
7.
Photochem Photobiol Sci ; 22(6): 1415-1427, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36781703

RESUMEN

Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.


Asunto(s)
Cianobacterias , Fotorreceptores Microbianos , Fitocromo , Ficobilisomas/metabolismo , Proteínas Bacterianas/química , Cianobacterias/química , Fotosíntesis , Aclimatación , Fotorreceptores Microbianos/química , Fitocromo/química
8.
J Biol Chem ; 293(51): 19511-19521, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30348902

RESUMEN

Small heat-shock proteins (sHsps) are ubiquitous molecular chaperones, and sHsp mutations or altered expression are linked to multiple human disease states. sHsp monomers assemble into large oligomers with dimeric substructure, and the dynamics of sHsp oligomers has led to major questions about the form that captures substrate, a critical aspect of their mechanism of action. We show here that substructural dimers of two plant dodecameric sHsps, Ta16.9 and homologous Ps18.1, are functional units in the initial encounter with unfolding substrate. We introduced inter-polypeptide disulfide bonds at the two dodecameric interfaces, dimeric and nondimeric, to restrict how their assemblies can dissociate. When disulfide-bonded at the nondimeric interface, mutants of Ta16.9 and Ps18.1 (TaCT-ACD and PsCT-ACD) were inactive but, when reduced, had WT-like chaperone activity, demonstrating that dissociation at nondimeric interfaces is essential for sHsp activity. Moreover, the size of the TaCT-ACD and PsCT-ACD covalent unit defined a new tetrahedral geometry for these sHsps, different from that observed in the Ta16.9 X-ray structure. Importantly, oxidized Tadimer (disulfide bonded at the dimeric interface) exhibited greatly enhanced ability to protect substrate, indicating that strengthening the dimeric interface increases chaperone efficiency. Temperature-induced size and secondary structure changes revealed that folded sHsp dimers interact with substrate and that dimer stability affects chaperone efficiency. These results yield a model in which sHsp dimers capture substrate before assembly into larger, heterogeneous sHsp-substrate complexes for substrate refolding or degradation, and suggest that tuning the strength of the dimer interface can be used to engineer sHsp chaperone efficiency.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína , Disulfuros/química , Proteínas de Choque Térmico/genética , Malato Deshidrogenasa/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína
9.
Proc Natl Acad Sci U S A ; 111(16): E1562-70, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711386

RESUMEN

Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-ß peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/metabolismo , Secuencia de Aminoácidos , Animales , Cristalización , Cisteína/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Mamíferos , Datos de Secuencia Molecular , Células PC12 , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad
10.
Anal Chem ; 87(8): 4370-6, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25799115

RESUMEN

Interpretation of mass spectra is challenging because they report a ratio of two physical quantities, mass and charge, which may each have multiple components that overlap in m/z. Previous approaches to disentangling the two have focused on peak assignment or fitting. However, the former struggle with complex spectra, and the latter are generally computationally intensive and may require substantial manual intervention. We propose a new data analysis approach that employs a Bayesian framework to separate the mass and charge dimensions. On the basis of this approach, we developed UniDec (Universal Deconvolution), software that provides a rapid, robust, and flexible deconvolution of mass spectra and ion mobility-mass spectra with minimal user intervention. Incorporation of the charge-state distribution in the Bayesian prior probabilities provides separation of the m/z spectrum into its physical mass and charge components. We have evaluated our approach using systems of increasing complexity, enabling us to deduce lipid binding to membrane proteins, to probe the dynamics of subunit exchange reactions, and to characterize polydispersity in both protein assemblies and lipoprotein Nanodiscs. The general utility of our approach will greatly facilitate analysis of ion mobility and mass spectra.


Asunto(s)
Proteínas/análisis , Algoritmos , Teorema de Bayes , Espectrometría de Masa por Ionización de Electrospray
11.
mBio ; 15(3): e0331423, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38377621

RESUMEN

Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in Rhodobacter capsulatus via proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, R. capsulatus strains with deletions of ferredoxin (fdx) and flavodoxin (fld, nifF) genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. R. capsulatus deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity in vivo. Only deletions of fdxC or fdxN resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both fdxC and fdxN abolished diazotrophic growth. Differences in the proteomes of ∆fdxC and ∆fdxN strains, in conjunction with differing plasmid complementation behaviors of fdxC and fdxN, indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation via nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph Rhodobacter capsulatus, showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.


Asunto(s)
Nitrogenasa , Rhodobacter capsulatus , Nitrogenasa/metabolismo , Fijación del Nitrógeno/genética , Ferredoxinas/metabolismo , Proteoma/metabolismo , Hierro/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo
12.
Nat Commun ; 15(1): 318, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182620

RESUMEN

The transcriptional antisilencer VirB acts as a master regulator of virulence gene expression in the human pathogen Shigella flexneri. It binds DNA sequences (virS) upstream of VirB-dependent promoters and counteracts their silencing by the nucleoid-organizing protein H-NS. However, its precise mode of action remains unclear. Notably, VirB is not a classical transcription factor but related to ParB-type DNA-partitioning proteins, which have recently been recognized as DNA-sliding clamps using CTP binding and hydrolysis to control their DNA entry gate. Here, we show that VirB binds CTP, embraces DNA in a clamp-like fashion upon its CTP-dependent loading at virS sites and slides laterally on DNA after clamp closure. Mutations that prevent CTP-binding block VirB loading in vitro and abolish the formation of VirB nucleoprotein complexes as well as virulence gene expression in vivo. Thus, VirB represents a CTP-dependent molecular switch that uses a loading-and-sliding mechanism to control transcription during bacterial pathogenesis.


Asunto(s)
ADN , Shigella flexneri , Humanos , Shigella flexneri/genética , Virulencia/genética , Hidrólisis , Expresión Génica
13.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513038

RESUMEN

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Asunto(s)
Proteínas Bacterianas , Evolución Molecular , Péptido Sintasas , Ingeniería de Proteínas , Péptido Sintasas/química , Péptido Sintasas/clasificación , Péptido Sintasas/genética , Filogenia , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Análisis de Secuencia de Proteína
14.
Nat Commun ; 14(1): 4056, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422455

RESUMEN

During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA. Conversely, the Frz chemosensory system, by acting on the polarity module, causes polarity inversions. MglA localization depends on the RomR/RomX GEF and MglB/RomY GAP complexes that localize asymmetrically to the poles by unknown mechanisms. Here, we show that RomR and the MglB and MglC roadblock domain proteins generate a positive feedback by forming a RomR/MglC/MglB complex, thereby establishing the rear pole with high GAP activity that is non-permissive to MglA. MglA at the front engages in negative feedback that breaks the RomR/MglC/MglB positive feedback allosterically, thus ensuring low GAP activity at this pole. These findings unravel the design principles of a system for switchable front-rear polarity.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Myxococcus xanthus , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/metabolismo , Movimiento Celular/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Polaridad Celular/fisiología
15.
Microlife ; 4: uqad011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223728

RESUMEN

The bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H+-powered motors), or PomA and PomB (in Na+-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function. We reconstructed 10 ancestral sequences of MotA and found four of them were motile in combination with contemporary Escherichia coli MotB and in combination with our previously published functional ancestral MotBs. Sequence comparison between wild-type (WT) E. coli MotA and MotA-ASRs revealed 30 critical residues across multiple domains of MotA that were conserved among all motile stator units. These conserved residues included pore-facing, cytoplasm-facing, and MotA-MotA intermolecular facing sites. Overall, this work demonstrates the role of ASR in assessing conserved variable residues in a subunit of a molecular complex.

16.
Sci Adv ; 9(22): eadg6689, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267359

RESUMEN

Aldehyde oxidoreductases (AORs) are tungsten enzymes catalyzing the oxidation of many different aldehydes to the corresponding carboxylic acids. In contrast to other known AORs, the enzyme from the denitrifying betaproteobacterium Aromatoleum aromaticum (AORAa) consists of three different subunits (AorABC) and uses nicotinamide adenine dinucleotide (NAD) as an electron acceptor. Here, we reveal that the enzyme forms filaments of repeating AorAB protomers that are capped by a single NAD-binding AorC subunit, based on solving its structure via cryo-electron microscopy. The polyferredoxin-like subunit AorA oligomerizes to an electron-conducting nanowire that is decorated with enzymatically active and W-cofactor (W-co) containing AorB subunits. Our structure further reveals the binding mode of the native substrate benzoate in the AorB active site. This, together with quantum mechanics:molecular mechanics (QM:MM)-based modeling for the coordination of the W-co, enables formulation of a hypothetical catalytic mechanism that paves the way to further engineering for applications in synthetic biology and biotechnology.


Asunto(s)
Aldehído Oxidorreductasas , Nanocables , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Tungsteno/metabolismo , NAD , Microscopía por Crioelectrón , Aldehído Deshidrogenasa
17.
Front Mol Biosci ; 10: 1072606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776742

RESUMEN

Introduction: Dissecting the intricate networks of covalent and non-covalent interactions that stabilize complex protein structures is notoriously difficult and requires subtle atomic-level exchanges to precisely affect local chemical functionality. The function of the Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, depends strongly on two H-bonds between the 4-ketolated xanthophyll cofactor and two highly conserved residues in the C-terminal domain (Trp288 and Tyr201). Method: By orthogonal translation, we replaced Trp288 in Synechocystis OCP with 3-benzothienyl-L-alanine (BTA), thereby exchanging the imino nitrogen for a sulphur atom. Results: Although the high-resolution (1.8 Å) crystal structure of the fully photoactive OCP-W288_BTA protein showed perfect isomorphism to the native structure, the spectroscopic and kinetic properties changed distinctly. We accurately parameterized the effects of the absence of a single H-bond on the spectroscopic and thermodynamic properties of OCP photoconversion and reveal general principles underlying the design of photoreceptors by natural evolution. Discussion: Such "molecular surgery" is superior over trial-and-error methods in hypothesis-driven research of complex chemical systems.

18.
Nat Ecol Evol ; 7(5): 756-767, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012377

RESUMEN

Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/fisiología , Carotenoides/metabolismo
19.
Cell Rep ; 42(11): 113375, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37980572

RESUMEN

Membraneless organelles, or biomolecular condensates, enable cells to compartmentalize material and processes into unique biochemical environments. While specific, attractive molecular interactions are known to stabilize biomolecular condensates, repulsive interactions, and the balance between these opposing forces, are largely unexplored. Here, we demonstrate that repulsive and attractive electrostatic interactions regulate condensate stability, internal mobility, interfaces, and selective partitioning of molecules both in vitro and in cells. We find that signaling ions, such as calcium, alter repulsions between model Ddx3 and Ddx4 condensate proteins by directly binding to negatively charged amino acid sidechains and effectively inverting their charge, in a manner fundamentally dissimilar to electrostatic screening. Using a polymerization model combined with generalized stickers and spacers, we accurately quantify and predict condensate stability over a wide range of pH, salt concentrations, and amino acid sequences. Our model provides a general quantitative treatment for understanding how charge and ions reversibly control condensate stability.


Asunto(s)
Orgánulos , Proteínas , Orgánulos/metabolismo , Proteínas/metabolismo , ADN Helicasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Iones/análisis , Iones/metabolismo
20.
Curr Opin Struct Biol ; 73: 102339, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247750

RESUMEN

Intricate biochemical structures are usually thought to be useful, because natural selection preserves them from degradation by a constant hail of destructive mutations. Biochemists therefore often deliberately disrupt them to understand how complexity improves protein function or fitness. However, evolutionary theory suggests that even useless complexity that never improved fitness can become completely essential if a simple set of evolutionary conditions is fulfilled. We review evidence that stable protein complexes, protein-chaperone interactions, and complexes consisting of several paralogs all fulfill these conditions. This makes reverse genetics or destructive mutagenesis unsuitable for assigning functions to these kinds of complexity. Instead, we advocate that incorporating evolutionary approaches into biochemistry overcomes this difficulty and allows us to distinguish useless from useful biochemical complexity.


Asunto(s)
Evolución Biológica , Selección Genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA