Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Sci ; 137(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533689

RESUMEN

Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.


Asunto(s)
Cilios , Proteínas Asociadas a Microtúbulos , Cilios/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Animales , Dineínas/metabolismo , Dineínas/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transducción de Señal , Ratones , Flagelos/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696571

RESUMEN

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Asunto(s)
COVID-19 , Endosomas , Interacciones Huésped-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virología , Sistemas CRISPR-Cas , Endosomas/virología , Eliminación de Gen , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteómica , SARS-CoV-2/metabolismo , Nexinas de Clasificación/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
J Am Chem Soc ; 146(15): 10240-10245, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578222

RESUMEN

Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely ß conformations, analogous to models of pathological phase separation.


Asunto(s)
Fenómenos Bioquímicos , Proteínas , Humanos , Proteínas/química , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Conformación Molecular
4.
Small ; 17(10): e2100472, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33590708

RESUMEN

The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.


Asunto(s)
Nanopartículas , Péptidos , Fenómenos Biofísicos , Estructura Secundaria de Proteína , Proteínas
5.
Nature ; 522(7555): 236-9, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26040713

RESUMEN

During telophase, the nuclear envelope (NE) reforms around daughter nuclei to ensure proper segregation of nuclear and cytoplasmic contents. NE reformation requires the coating of chromatin by membrane derived from the endoplasmic reticulum, and a subsequent annular fusion step to ensure that the formed envelope is sealed. How annular fusion is accomplished is unknown, but it is thought to involve the p97 AAA-ATPase complex and bears a topological equivalence to the membrane fusion event that occurs during the abscission phase of cytokinesis. Here we show that the endosomal sorting complex required for transport-III (ESCRT-III) machinery localizes to sites of annular fusion in the forming NE in human cells, and is necessary for proper post-mitotic nucleo-cytoplasmic compartmentalization. The ESCRT-III component charged multivesicular body protein 2A (CHMP2A) is directed to the forming NE through binding to CHMP4B, and provides an activity essential for NE reformation. Localization also requires the p97 complex member ubiquitin fusion and degradation 1 (UFD1). Our results describe a novel role for the ESCRT machinery in cell division and demonstrate a conservation of the machineries involved in topologically equivalent mitotic membrane remodelling events.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membrana Nuclear/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Línea Celular , Cromatina/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fusión de Membrana , Mitosis , Transporte de Proteínas , Proteínas/metabolismo , Telofase
6.
Nat Chem Biol ; 14(2): 142-147, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227472

RESUMEN

We have developed a system for producing a supramolecular scaffold that permeates the entire Escherichia coli cytoplasm. This cytoscaffold is constructed from a three-component system comprising a bacterial microcompartment shell protein and two complementary de novo coiled-coil peptides. We show that other proteins can be targeted to this intracellular filamentous arrangement. Specifically, the enzymes pyruvate decarboxylase and alcohol dehydrogenase have been directed to the filaments, leading to enhanced ethanol production in these engineered bacterial cells compared to those that do not produce the scaffold. This is consistent with improved metabolic efficiency through enzyme colocation. Finally, the shell-protein scaffold can be directed to the inner membrane of the cell, demonstrating how synthetic cellular organization can be coupled with spatial optimization through in-cell protein design. The cytoscaffold has potential in the development of next-generation cell factories, wherein it could be used to organize enzyme pathways and metabolite transporters to enhance metabolic flux.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Alcohol Deshidrogenasa/metabolismo , Bacillus/metabolismo , Proteínas Bacterianas/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Dominios Proteicos , Piruvato Descarboxilasa/metabolismo
7.
Nano Lett ; 19(3): 2178-2185, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30810045

RESUMEN

Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.


Asunto(s)
Medios de Contraste/química , Nanodiamantes/química , Nanoestructuras/administración & dosificación , Rastreo Celular/métodos , Medios de Contraste/farmacología , Electrones , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Células HeLa , Humanos , Microscopía Electrónica , Nanodiamantes/administración & dosificación , Nanodiamantes/ultraestructura , Nanoestructuras/química , Orgánulos/efectos de los fármacos
8.
Nano Lett ; 18(9): 5933-5937, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30084257

RESUMEN

Nanoparticles can be used to transport a variety of biological cargoes into eukaryotic cells. Polypeptides provide a versatile material for constructing such systems. Previously, we have assembled nanoscale peptide cages (SAGEs) from de novo designed coiled-coil modules. Here, we show that the modules can be extended with short charged peptides to alter endocytosis of the assembled SAGE particles by cultured human cells in a tunable fashion. First, we find that the peptide extensions affect coiled-coil stability predictably: N-terminal polylysine and C-terminal polyglutamate tags are destabilizing; whereas, the reversed arrangements have little impact. Second, the cationic assembled particles are internalized faster and to greater extents by cells than the parent SAGEs. By contrast, anionic decorations markedly inhibit both aspects of uptake. These studies highlight how the modular SAGE system facilitates rational peptide design to fine-tune the bioactivity of nanoparticles, which should allow engineering of tailored cell-delivery vehicles.


Asunto(s)
Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Nanosferas/metabolismo , Péptidos/metabolismo , Animales , Portadores de Fármacos/química , Células HeLa , Humanos , Modelos Moleculares , Nanopartículas/química , Nanosferas/química , Péptidos/química , Estructura Secundaria de Proteína
9.
J Lipid Res ; 59(8): 1402-1413, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29895700

RESUMEN

Dysregulation of nuclear envelope (NE) assembly results in various cancers; for example, renal and some lung carcinomas ensue due to NE malformation. The NE is a dynamic membrane compartment and its completion during mitosis is a highly regulated process, but the detailed mechanism still remains incompletely understood. Previous studies have found that isolated diacylglycerol (DAG)-containing vesicles are essential for completing the fusion of the NE in nonsomatic cells. We investigated the impact of DAG depletion from the cis-Golgi in mammalian cells on NE reassembly. Using advanced electron microscopy, we observed an enriched DAG population of vesicles at the vicinity of the NE gaps of telophase mammalian cells. We applied a mini singlet oxygen generator-C1-domain tag that localized DAG-enriched vesicles at the perinuclear region, which suggested the existence of NE fusogenic vesicles. We quantified the impact of Golgi-DAG depletion by measuring the in situ NE rim curvature of the reforming NE. The rim curvature in these cells was significantly reduced compared with controls, which indicated a localized defect in NE morphology. Our novel results demonstrate the significance of the role of DAG from the cis-Golgi for the regulation of NE assembly.


Asunto(s)
Diglicéridos/metabolismo , Aparato de Golgi/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Células HeLa , Humanos
10.
J Cell Sci ; 126(Pt 9): 1931-41, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23444368

RESUMEN

Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.


Asunto(s)
Adipocitos/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células 3T3-L1 , Adipocitos/citología , Sustitución de Aminoácidos , Animales , Membrana Celular/genética , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/genética , Transportador de Glucosa de Tipo 4/genética , Aparato de Golgi/genética , Hipoglucemiantes/farmacología , Insulina/farmacología , Ratones , Mutación Missense , Transporte de Proteínas/fisiología , Proteínas de Unión al GTP rab/genética
12.
J Cell Sci ; 125(Pt 3): 673-84, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22331354

RESUMEN

Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.


Asunto(s)
Proteínas Portadoras/fisiología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Proteínas de Transporte Vesicular/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Secuencia de Bases , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Células CACO-2 , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Técnicas de Cocultivo , Matriz Extracelular/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Microscopía Electrónica de Transmisión , Morfogénesis , ARN Interferente Pequeño/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
13.
Methods Cell Biol ; 187: 99-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705632

RESUMEN

Correlative Light Electron Microscopy (CLEM) is a powerful technique to investigate the ultrastructure of specific cells and organelles at sub-cellular resolution. Transmission Electron Microscopy (TEM) is particularly useful to the field of virology, given the small size of the virion, which is below the limit of detection by light microscopy. Furthermore, viral infection results in the rearrangement of host organelles to form spatially defined compartments that facilitate the replication of viruses. With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there has been great interest to study the viral replication complex using CLEM. In this chapter we provide an exemplary workflow describing the safe preparation and processing of cells grown on coverslips and infected with SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/ultraestructura , Humanos , COVID-19/virología , Células Vero , Chlorocebus aethiops , Animales , Microscopía Electrónica de Transmisión/métodos , Replicación Viral , Microscopía Electrónica/métodos
14.
ACS Nano ; 17(24): 25279-25290, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38065569

RESUMEN

Cyanobacteria offer great potential as alternative biotechnological hosts due to their photoautotrophic capacities. However, in comparison to established heterotrophic hosts, several key aspects, such as product titers, are still lagging behind. Nanobiotechnology is an emerging field with great potential to improve existing hosts, but so far, it has barely been explored in microbial photosynthetic systems. Here, we report the establishment of large proteinaceous nanofilaments in the unicellular model cyanobacterium Synechocystis sp. PCC 6803 and the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Transmission electron microscopy and electron tomography demonstrated that expression of pduA*, encoding a modified bacterial microcompartment shell protein, led to the generation of bundles of longitudinally aligned nanofilaments in S. elongatus UTEX 2973 and shorter filamentous structures in Synechocystis sp. PCC 6803. Comparative proteomics showed that PduA* was at least 50 times more abundant than the second most abundant protein in the cell and that nanofilament assembly had only a minor impact on cellular metabolism. Finally, as a proof-of-concept for co-localization with the filaments, we targeted a fluorescent reporter protein, mCitrine, to PduA* by fusion with an encapsulation peptide that natively interacts with PduA. The establishment of nanofilaments in cyanobacterial cells is an important step toward cellular organization of heterologous pathways and the establishment of cyanobacteria as next-generation hosts.


Asunto(s)
Synechocystis , Synechocystis/metabolismo , Fotosíntesis , Transporte de Proteínas , Proteínas Bacterianas/metabolismo
15.
Sci Adv ; 8(47): eadc9179, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417532

RESUMEN

As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic ß-coronaviruses (ß-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic ß-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ácidos Grasos no Esterificados , SARS-CoV-2
16.
Methods Cell Biol ; 162: 39-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707021

RESUMEN

Correlative Imaging (CI) visualizes a single sample/region of interest with two or more imaging modalities. The technique seeks to elucidate information that may not be discernible by using either of the constituent techniques in isolation. Correlative Light Electron Microscopy (CLEM) can be employed to streamline workflows, i.e., using fluorescent signals in the light microscope (LM) to inform the user of regions which should be imaged with electron microscopy (EM). The efficacy of correlative techniques requires high spatial resolution of signals from both imaging modalities. Ideally, a single point should originate from both the fluorescence and electron density. However, many of the ubiquitously used probes have a significant distance between their fluorescence and electron dense portions. Furthermore, electron dense metal nanoparticles used for EM visualization readily quench any proximal adjacent fluorophores. Therefore, accurate registration of both signals becomes difficult. Here we describe fluorescent nanoclusters in the context of a CLEM probe as they are composed of several atoms of a noble metal, in this case platinum, providing electron density. In addition, their structure confers them with fluorescence via a mechanism analogous to quantum dots. The electron dense core gives rise to the fluorescence which enables highly accurate signal registration between epifluorescence and electron imaging modalities. We provide a protocol for the synthesis of the nanoclusters with some additional techniques for their characterization and finally show how they can be used in a CLEM set up.


Asunto(s)
Electrones , Platino (Metal) , Colorantes Fluorescentes , Microscopía Electrónica , Microscopía Fluorescente
17.
Methods Cell Biol ; 162: 69-87, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707023

RESUMEN

The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.


Asunto(s)
Complejos de Coordinación , Nanopartículas del Metal , Electrones , Oro , Microscopía Electrónica , Microscopía Fluorescente , Flujo de Trabajo
18.
Chem Sci ; 11(32): 8394-8408, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34094184

RESUMEN

Polymer-based nanoparticles show substantial promise in the treatment and diagnosis of cancer and other diseases. Herein we report an exploration of the cellular uptake of tailored, low dispersity segmented 1D nanoparticles which were prepared from an amphiphilic block copolymer, poly(dihexylfluorene)-b-poly(ethyleneglycol) (PDHF13-b-PEG227), with a crystallizable PDHF core-forming block and a 'stealth' PEG corona-forming block with different end-group functionalities. Segmented C-B-A-B-C pentablock 1D nanofibers with varied spatially-defined coronal chemistries and a selected length (95 nm) were prepared using the living crystallization-driven self-assembly (CDSA) seeded-growth method. As the blue fluorescence of PDHF is often subject to environment-related quenching, a far-red BODIPY (BD) fluorophore was attached to the PEG end-group of the coronal B segments to provide additional tracking capability. Folic acid (FA) was also incorporated as a targeting group in the terminal C segments. These dual-emissive pentablock nanofibers exhibited uptake into >97% of folate receptor positive HeLa cells by flow cytometry. In the absence of FA, no significant uptake was detected and nanofibers with either FA or BD coronal groups showed no significant toxicity. Correlative light and electron microscopy (CLEM) studies revealed receptor-mediated endocytosis as an uptake pathway, with subsequent localization to the perinuclear region. A significant proportion of the nanofibers also appeared to interact with the cell membrane in an end-on fashion, which was coupled with fluorescence quenching of the PDHF core. These results provide new insights into the cellular uptake of polymer-based nanofibers and suggest their potential use in targeted therapies and diagnostics.

19.
Mol Metab ; 39: 100998, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32305516

RESUMEN

OBJECTIVE: Exercise is a cornerstone in the management of skeletal muscle insulin-resistance. A well-established benefit of a single bout of exercise is increased insulin sensitivity for hours post-exercise in the previously exercised musculature. Although rodent studies suggest that the insulin-sensitization phenomenon involves enhanced insulin-stimulated GLUT4 cell surface translocation and might involve intramuscular redistribution of GLUT4, the conservation to humans is unknown. METHODS: Healthy young males underwent an insulin-sensitizing one-legged kicking exercise bout for 1 h followed by fatigue bouts to exhaustion. Muscle biopsies were obtained 4 h post-exercise before and after a 2-hour hyperinsulinemic-euglycemic clamp. RESULTS: A detailed microscopy-based analysis of GLUT4 distribution within seven different myocellular compartments revealed that prior exercise increased GLUT4 localization in insulin-responsive storage vesicles and T-tubuli. Furthermore, insulin-stimulated GLUT4 localization was augmented at the sarcolemma and in the endosomal compartments. CONCLUSIONS: An intracellular redistribution of GLUT4 post-exercise is proposed as a molecular mechanism contributing to the insulin-sensitizing effect of prior exercise in human skeletal muscle.


Asunto(s)
Endosomas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Adulto , Biopsia , Ejercicio Físico , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Microscopía Fluorescente , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Adulto Joven
20.
Sci Rep ; 10(1): 15203, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938984

RESUMEN

Alpha-helical integral membrane proteins contain conserved sequence motifs that are known to be important in helix packing. These motifs are a promising starting point for the construction of artificial proteins, but their potential has not yet been fully explored. Here, we study the impact of introducing a common natural helix packing motif to the transmembrane domain of a genetically-encoded and structurally dynamic de novo membrane protein. The resulting construct is an artificial four-helix bundle with lipophilic regions that are defined only by the amino acids L, G, S, A and W. This minimal proto-protein could be recombinantly expressed by diverse prokaryotic and eukaryotic hosts and was found to co-sediment with cellular membranes. The protein could be extracted and purified in surfactant micelles and was monodisperse and stable in vitro, with sufficient structural definition to support the rapid binding of a heme cofactor. The reduction in conformational diversity imposed by this design also enhances the nascent peroxidase activity of the protein-heme complex. Unexpectedly, strains of Escherichia coli expressing this artificial protein specifically accumulated zinc protoporphyrin IX, a rare cofactor that is not used by natural metalloenzymes. Our results demonstrate that simple sequence motifs can rigidify elementary membrane proteins, and that orthogonal artificial membrane proteins can influence the cofactor repertoire of a living cell. These findings have implications for rational protein design and synthetic biology.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Secuencias de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Protoporfirinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA