Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Med Chem ; 51(7): 2178-86, 2008 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-18341273

RESUMEN

We describe the discovery of novel inhibitors of prostaglandin D2 synthase (PGDS) through fragment-based lead generation and structure-based drug design. A library of 2500 low-molecular-weight compounds was screened using 2D nuclear magnetic resonance (NMR), leading to the identification of 24 primary hits. Structure determination of protein-ligand complexes with the hits enabled a hit optimization process, whereby we harvested increasingly more potent inhibitors out of our corporate compound collection. Two iterative cycles were carried out, comprising NMR screening, molecular modeling, X-ray crystallography, and in vitro biochemical testing. Six novel high-resolution PGDS complex structures were determined, and 300 hit analogues were tested. This rational drug design procedure culminated in the discovery of 24 compounds with an IC 50 below 1 microM in the in vitro assay. The best inhibitor (IC 50 = 21 nM) is one of the most potent inhibitors of PGDS to date. As such, it may enable new functional in vivo studies of PGDS and the prostaglandin metabolism pathway.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Lipocalinas/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Peso Molecular , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
2.
J Am Chem Soc ; 124(40): 11908-22, 2002 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-12358535

RESUMEN

We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Isótopos de Carbono , Modelos Químicos , Modelos Moleculares , Isótopos de Nitrógeno , Conformación Proteica , Protones
3.
J Am Chem Soc ; 125(26): 7788-9, 2003 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12822982

RESUMEN

In this communication, we demonstrate the feasibility of 1H detection in MAS solid-state NMR for a microcrystalline, uniformly 2H,15N-labeled sample of a SH3 domain of chicken alpha-spectrin, using pulsed field gradients for suppression of water magnetization. Today, B0 gradients are employed routinely in solution-state NMR for coherence order selection and solvent suppression. We suggest to use gradients to purge water magnetization which cannot be suppressed using conventional water suppression schemes. The achievable gain in sensitivity for 1H detection is in the order of 5 compared to the 15N detected version of the experiment (at a MAS rotation frequency of 13.5 kHz). We expect that this labeling concept which achieves high sensitivity due to 1H detection, in combination with the possibility to measure long range 1H-1H distances as we have shown previously, to be a useful tool for the determination of protein structures in the solid state.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Espectrina/química , Animales , Pollos , Isótopos de Nitrógeno , Protones , Soluciones , Dominios Homologos src
4.
Biochemistry ; 41(2): 431-8, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11781081

RESUMEN

In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.


Asunto(s)
Bacteriorodopsinas/fisiología , Carbono/química , Hidrógeno/química , Luz , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Nitrógeno/química , Difracción de Rayos X
5.
Proc Natl Acad Sci U S A ; 99(16): 10260-5, 2002 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12149447

RESUMEN

The three-dimensional structure of the chemotactic peptide N-formyl-l-Met-l-Leu-l-Phe-OH was determined by using solid-state NMR (SSNMR). The set of SSNMR data consisted of 16 (13)C-(15)N distances and 18 torsion angle constraints (on 10 angles), recorded from uniformly (13)C,(15)N- and (15)N-labeled samples. The peptide's structure was calculated by means of simulated annealing and a newly developed protocol that ensures that all of conformational space, consistent with the structural constraints, is searched completely. The result is a high-quality structure of a molecule that has thus far not been amenable to single-crystal diffraction studies. The extensions of the SSNMR techniques and computational methods to larger systems appear promising.


Asunto(s)
N-Formilmetionina Leucil-Fenilalanina/química , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA