Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764490

RESUMEN

It is well recognized that the aging process is a critical step in winemaking because it induces substantial chemical changes linked to the organoleptic properties and stability of the finished wines. Therefore, this study aimed to investigate the influence of different types, utilization times, and volumes of aging barrels on the metabolite profile of red wines, produced from Thai-grown Shiraz grapes, using a non-targeted proton nuclear magnetic resonance (1H-NMR) metabolomics approach. As a result, 37 non-volatile polar metabolites including alcohols, amino acids, organic acids, carbohydrates and low-molecular-weight phenolics were identified. Chemometric analysis allowed the discrimination of wine metabolite profiles associated with different types of aging containers (oak barrels vs. stainless-steel tanks), as well as the utilization times (2, 6 and >10 years old) and volumes (225, 500 and 2000 L) of the wooden barrels employed. Significant variations in the concentration of formate, fumarate, pyruvate, succinate, citrate, gallate, acetate, tyrosine, phenylalanine, histidine, γ-aminobutyrate, methionine and choline were statistically suggested as indicators accountable for the discrimination of samples aged under different conditions. These feature biomarkers could be applied to manipulate the use of aging containers to achieve the desired wine maturation profiles.


Asunto(s)
Vino , Espectroscopía de Protones por Resonancia Magnética , Imagen por Resonancia Magnética , Bebidas Alcohólicas
2.
Sci Rep ; 13(1): 1989, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737492

RESUMEN

The objective of this study was to investigate the impact of lactation stage and parity number on fatty acid and non-volatile polar metabolite profiles in sow colostrum and milk using a metabolomics approach. A total number of 63 colostrum, transient and mature milk were collected from primiparous and multiparous Landrace × Yorkshire crossbred sows. Macrochemical, fatty acid and non-volatile polar metabolite compositions of samples were analyzed using infrared spectrometry, gas chromatography coupled with mass-spectrometry and proton nuclear magnetic resonance spectroscopy, respectively. Univariate and multivariate statistical analysis demonstrated significant impacts of lactation stage and parity number on colostrum and milk compositions. Chemometric analysis revealed significant influences of sow parity on the distinction in fatty acid profiles of mature milk while the distinction in non-volatile polar metabolite profiles was more evident in colostrum. Alterations in the concentration of linoleic (C18:2n6), lignoceric (C24:0), behenic (C22:0), caprylic (C8:0) and myristoleic (C14:1) acid together with those of creatine, creatinine phosphate, glutamate and glycolate were statistically suggested to be mainly affected by sow parity number. Variations in the concentration of these compounds reflected the physiological function of sow mammary gland influenced. This information could be applied for feed and feeding strategies in lactating sows and improving lactating performances.


Asunto(s)
Calostro , Leche , Embarazo , Porcinos , Animales , Femenino , Leche/química , Calostro/química , Lactancia/fisiología , Paridad , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Alimentación Animal/análisis , Dieta/veterinaria
3.
Sci Rep ; 12(1): 13070, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906387

RESUMEN

The effects of organic amendments on the phytoremediation of cadmium (Cd) in acacia (Acacia mangium), jatropha (Jatropha curcas), and cassava (Manihot esculenta) were investigated. The bone meal/bat manure and leonardite/bat manure amendments resulted in better growth performance in both acacia and cassava (growth rate in dry biomass; GRDB 24.2 and 22.2, respectively), while bone meal (GRDB 17.2) was best for jatropha. The lower root/shoot ratio values of jatropha and acacia suggest that these species were better suited than cassava on Cd-contaminated soil. Cassava experienced toxicity symptoms after harvest (3 months). Acacia root accumulated somewhat greater Cd concentrations (up to 5.1 mg kg-1) than cassava and jatropha roots (2.2-3.9 and 2.7-4.1 mg kg-1, respectively). The bone meal and chicken manure (BMCM) treatment for jatropha had the highest bioconcentration factor for root (1.3) and the lowest translocation factor (0.7). Despite the fact that this treatment had substantial Cd concentrations in the soil (3.1 mg kg-1), low Cd accumulation value (3.2 mg kg-1) and the lowest Cd uptake value (127.8 mg plant-1) were observed, clearly indicating that this amendment reduced Cd bioavailability. When growth performance of the study plants is considered, jatropha and acacia may be suitable for phytomanagement of Cd-contaminated soil.


Asunto(s)
Jatropha , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Productos Agrícolas , Estiércol , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA