RESUMEN
Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.
Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación FisiológicaRESUMEN
Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.
Asunto(s)
Organogénesis , Transcriptoma , Animales , ADN/genética , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica/métodos , Mamíferos/genética , Ratones , Organogénesis/genética , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genéticaRESUMEN
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.
Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Herbicidas/farmacología , Herbicidas/química , Catálisis , BiologíaRESUMEN
Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many ß-triketone herbicides (ß-THs). The crystal structures of maize HSL1A complexed with ß-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying ß-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to ß-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.
Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , MutaciónRESUMEN
Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatidicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatidicos/metabolismo , Tilacoides/metabolismoRESUMEN
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Asunto(s)
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés FisiológicoRESUMEN
Competing endogenous RNAs (ceRNAs) are vital regulators of gene networks in mammals. The involvement of noncoding RNAs (ncRNAs) as ceRNA in genotypic sex determination (GSD) and environmental sex determination (ESD) in fish is unknown. The Chinese tongue sole, which has both GSD and ESD mechanisms, was used to map the dynamic expression pattern of ncRNAs and mRNA in gonads during sex determination and differentiation. Transcript expression patterns shift during the sex differentiation phase, and ceRNA modulation occurs through crosstalk of differentially expressed long ncRNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and sex-related genes in fish. Of note was the significant up-regulation of a circRNA from the sex-determining gene dmrt1 (circular RNA dmrt1) and a lncRNA, called AMSDT (which stands for associated with male sex differentiation of tongue sole) in Chinese tongue sole testis. These two ncRNAs both share the same miRNA response elements with gsdf, which has an up-regulated expression when they bind to miRNA cse-miR-196 and concurrent down-regulated female sex-related genes to facilitate testis differentiation. This is the first demonstration in fish that ceRNA crosstalk mediated by ncRNAs modulates sexual development and unveils a novel regulatory mechanism for sex determination and differentiation.
RESUMEN
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Asunto(s)
Proteínas de Drosophila , Genes Homeobox , Oxidorreductasas de Alcohol , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genéticaRESUMEN
Prolyl-4-hydroxylase subunit alpha3 (P4HA3) is a triple helical procollagen synthesis protein. The role of P4HA3 in cancer development is not well known and lacks comprehensive analyses among human cancers. This study aimed to investigate the relationship between P4HA3 expression and anti-tumor immunity and its prognostic value in pan-cancer. P4HA3 expression was analyzed from TIMER2.0, GTEx, GEPIA2.0 and TCGA databases. Genetic and DNA methylation alterations, survival analysis and proteins co-expression analysis of P4HA3 in cBio Cancer Genomics Portal, TCGA, GSCA and TIMER2.0. The correlation between P4HA3 expression and immune infiltration was analyzed by TIDE, XCELL, MCPCOUNTER, and EPIC. We performed EdU and transwell experiments to evaluate the influence of P4HA3 on the proliferation, migration and invasion abilities of different tumors. Patients derived xenograft (PDX) and subcutaneous transplantation models were utilized to explore the correlation between P4HA3 and immunotherapy response in triple-negative breast cancer (TNBC). Among 33 types of cancers, P4HA3 had generally different expression between different tumors, further analysis showed that the expression of P4HA3 was correlated with the cells infiltration of the tumor microenvironment (TME). The expression of P4HA3 was positively with the cell proliferation markers and epithelial-mesenchymal transition (EMT) markers. Moreover, P4HA3 deficiency inhibited the proliferation, migration and invasion abilities of tumor cells, and promoted anti-tumor immunotherapy of PD-1/PD-L1 inhibitor. This pan-cancer analysis of P4HA3 provides a comprehensive understanding of its oncogenic and prognosis role in different cancers, P4HA3 abnormal expression could be a useful biomarker for predicting the effectiveness of immunotherapy in cancer patients.
RESUMEN
Embryonic development is a key developmental event in plant sexual reproduction; however, regulatory networks of plant early embryonic development, particularly the effects and functional mechanisms of phospholipid molecules are still unknown due to the limitation of sample collection and analysis. We innovatively applied the microspore-derived in vitro embryogenesis of Brassica napus and revealed the dynamics of phospholipid molecules, especially phosphatidic acid (PA, an important second messenger that plays an important role in plant growth, development, and stress responses), at different embryonic developmental stages by using a lipidomics approach. Further analysis of Arabidopsis mutants deficiency of CDS1 and CDS2 (cytidinediphosphate diacylglycerol synthase, key protein in PA metabolism) revealed the delayed embryonic development from the proembryo stage, indicating the crucial effect of CDS and PA metabolism in early embryonic development. Decreased auxin level and disturbed polar localization of auxin efflux carrier PIN1 implicate that CDS-mediated PA metabolism may regulate early embryogenesis through modulating auxin transport and distribution. These results demonstrate the dynamics and importance of phospholipid molecules during embryo development, and provide informative clues to elucidate the regulatory network of embryogenesis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diglicéridos , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatidicos/metabolismoRESUMEN
Developing spinal circuits generate patterned motor outputs while many neurons with high membrane resistances are still maturing. In the spinal cord of hatchling frog tadpoles of unknown sex, we found that the firing reliability in swimming of inhibitory interneurons with commissural and ipsilateral ascending axons was negatively correlated with their cellular membrane resistance. Further analyses showed that neurons with higher resistances had outward rectifying properties, low firing thresholds, and little delay in firing evoked by current injections. Input synaptic currents these neurons received during swimming, either compound, unitary current amplitudes, or unitary synaptic current numbers, were scaled with their membrane resistances, but their own synaptic outputs were correlated with membrane resistances of their postsynaptic partners. Analyses of neuronal dendritic and axonal lengths and their activities in swimming and cellular input resistances did not reveal a clear correlation pattern. Incorporating these electrical and synaptic properties into a computer swimming model produced robust swimming rhythms, whereas randomizing input synaptic strengths led to the breakdown of swimming rhythms, coupled with less synchronized spiking in the inhibitory interneurons. We conclude that the recruitment of these developing interneurons in swimming can be predicted by cellular input resistances, but the order is opposite to the motor-strength-based recruitment scheme depicted by Henneman's size principle. This form of recruitment/integration order in development before the emergence of refined motor control is progressive potentially with neuronal acquisition of mature electrical and synaptic properties, among which the scaling of input synaptic strengths with cellular input resistance plays a critical role.SIGNIFICANCE STATEMENT The mechanisms on how interneurons are recruited to participate in circuit function in developing neuronal systems are rarely investigated. In 2-d-old frog tadpole spinal cord, we found the recruitment of inhibitory interneurons in swimming is inversely correlated with cellular input resistances, opposite to the motor-strength-based recruitment order depicted by Henneman's size principle. Further analyses showed the amplitude of synaptic inputs that neurons received during swimming was inversely correlated with cellular input resistances. Randomizing/reversing the relation between input synaptic strengths and membrane resistances in modeling broke down swimming rhythms. Therefore, the recruitment or integration of these interneurons is conditional on the acquisition of several electrical and synaptic properties including the scaling of input synaptic strengths with cellular input resistances.
Asunto(s)
Interneuronas , Natación , Animales , Natación/fisiología , Xenopus laevis/fisiología , Larva/fisiología , Reproducibilidad de los Resultados , Interneuronas/fisiología , Médula Espinal/fisiologíaRESUMEN
Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective hematopoiesis. Accumulating evidence has shown that macrophages (MΦs) are important components in the regulation of tumor progression and hematopoietic stem cells (HSCs). However, the roles of bone marrow (BM) MΦs in regulating normal and malignant hematopoiesis in different clinical stages of MDS are largely unknown. Age-paired patients with lower-risk MDS (N = 15), higher-risk MDS (N = 15), de novo acute myeloid leukemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. Flow cytometry analysis showed increased pro-inflammatory monocyte subsets and a decreased classically activated (M1) MΦs/alternatively activated (M2) MΦs ratio in the BM of patients with higher-risk MDS compared to lower-risk MDS. BM MФs from patients with higher-risk MDS and AML showed impaired phagocytosis activity but increased migration compared with lower-risk MDS group. AML BM MΦs showed markedly higher S100A8/A9 levels than lower-risk MDS BM MΦs. More importantly, coculture experiments suggested that the HSC supporting abilities of BM MΦs from patients with higher-risk MDS decreased, whereas the malignant cell supporting abilities increased compared with lower-risk MDS. Gene Ontology enrichment comparing BM MΦs from lower-risk MDS and higher-risk MDS for genes was involved in hematopoiesis- and immunity-related pathways. Our results suggest that BM MΦs are involved in ineffective hematopoiesis in patients with MDS, which indicates that repairing aberrant BM MΦs may represent a promising therapeutic approach for patients with MDS.
Asunto(s)
Infecciones , Macrófagos , Síndromes Mielodisplásicos , Humanos , Médula Ósea/patología , Hematopoyesis , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Macrófagos/patología , Síndromes Mielodisplásicos/genética , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Infecciones/patologíaRESUMEN
Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease that manifests as skin rash, arthritis, lymphadenopathy, and multiple organ lesions. Epigenetics, including DNA methylation, histone modification, and non-coding RNA regulation, mainly affect the function and characteristics of cells through the regulation of gene transcription or translation. Increasing evidence indicates that there are a variety of complex epigenetic effects in patients with SLE, which interfere with the differentiation and function of T, and B lymphocytes, monocytes, and neutrophils, and enhance the expression of SLE-associated pathogenic genes. This paper summarizes our currently knowledge regarding pathogenesis of SLE, and introduces current advances in the epigenetic regulation of SLE from three aspects: immune function, inflammatory response, and lupus complications. We propose that epigenetic changes could be used as potential biomarkers and therapeutic targets of SLE.
Asunto(s)
Artritis , Lupus Eritematoso Sistémico , Humanos , Epigénesis Genética , Metilación de ADN , Artritis/genética , Diferenciación CelularRESUMEN
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Asunto(s)
Mutación Missense , Defectos del Tubo Neural , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Defectos del Tubo Neural/genética , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Femenino , Masculino , Ratones , AnimalesRESUMEN
The pursuit of advanced mRNA detection methods has been driven by the need for sensitive, accurate approaches that are particularly suited for live-cell analysis. Herein, we proposed a cascaded and localized assembly (CLA) system, integrating branched catalytic hairpin assembly (bCHA) with a localized hybridization chain reaction (LHCR) for enhanced mRNA imaging. The CLA system employed a dual-nanosphere (NS) platform, NSABC and NS12, and the interaction between the target and NSABC initiated the bCHA process and activated a split trigger. The newly generated trigger served as the initiator for the LHCR on NS12, leading to amplified fluorescent signals. Notably, this work introduced the first integration of a splitting strategy in a bCHA-HCR cascaded system, reducing false-positive signals and enhancing specific detection. The dual-NS platform further minimized background noise and improved the reaction kinetics through spatial confinement. As a result, the system achieved a detection limit of 1.23 pM. With these advantages, the CLA system demonstrated successful application in both living cells and clinical tissues, underscoring its potential in biomolecular research and clinical diagnostics.
Asunto(s)
ADN , Nanosferas , ARN Mensajero , Nanosferas/química , ARN Mensajero/análisis , Humanos , ADN/química , Hibridación de Ácido Nucleico , Imagen Óptica , Límite de DetecciónRESUMEN
BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning algorithms, ultimately providing guidance for clinical decision-making. METHODS: This single-center retrospective cohort study includes all recipients under 18 years of age who underwent single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate logistic regression models and differential analysis were employed to identify features associated with DGF. Subsequently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combinations. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis (DCA), and other methods. RESULTS: The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed single indicators. The DCA curve confirmed the clinical utility of this model. CONCLUSIONS: In this study, we developed a machine learning-based predictive model for DGF following pediatric kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model demonstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings contribute to our understanding of the pathogenesis of DGF.
Asunto(s)
Funcionamiento Retardado del Injerto , Trasplante de Riñón , Aprendizaje Automático , Donantes de Tejidos , Humanos , Trasplante de Riñón/efectos adversos , Femenino , Masculino , Niño , Estudios Retrospectivos , Adolescente , Preescolar , LactanteRESUMEN
Lead-free halide perovskites as a new kind of potential candidate for photocatalytic organic synthesis have attracted much attention recently. The rational heterojunction construction is regarded as an efficient strategy to delicately regulate their catalytic performances. Herein, a semi-conductive covalent organic framework (COF) nanosheet, C4N, is employed as the functional component to construct Cs2AgBiCl6/C4N (CABC/C4N) heterojunction. It is found that the C4N nanosheets with rich surface functional groups can serve as heterogeneous nucleation sites to manipulate the growth of CABC nanocrystals and afford close contact between each other, therefore facilitate the transfer and spatial separation of photogenerated charge carriers, as verified by in situ X-ray photoelectronic spectroscopy and Kelvin probe force microscopy. Moreover, the oxygen affinity of C4N endows the heterojunctions with outstanding aerobic reactivity, thus improving the photocatalytic performance largely. The optimal CABC/C4N heterojunction delivers a thioanisole conversion efficiency of 100% after 6 h, which is 2.2 and 7.7-fold of that of CABC and C4N. This work provides a new ideal for the design and application of lead-free perovskite heterojunction photocatalysts for organic reactions.
RESUMEN
The development of novel catalysts for the rapid detoxification of sulfur mustard holds paramount importance in the field of military defense. In this work, titanium dioxide-phosphomolybdic acid sub-1 nm nanobelts (TiO2/PMA SNBs) are employed as effective catalysts for the ultra-fast degradation of mustard gas simulants (2-chloroethyl ethyl sulfide, CEES) with 100% selectivity and a half-life (t1/2, time required for 50% conversion) as short as 12 s, which is the fastest time to the best of the knowledge. Even in dark conditions, this material can still achieve over 90% conversion within 5 min. A mechanism study reveals that the rapid generation rate of 1O2 and O2 â¢- in the presence of TiO2/PMA SNBs and H2O2 plays a crucial role in facilitating the efficient oxidation of CEES. A filter layer of a gas mask loaded with TiO2/PMA SNBs and H2O2/polyvinylpyrrolidone cross-linked complex (PHP) is constructed, which demonstrates remarkable stability and exhibits exceptional efficacy in the detoxification of CEES in the presence of a small amount of water. This innovation offers great potential for enhancing personal protective equipment in practical applications.
RESUMEN
The interaction between catalyst and support plays an important role in electrocatalytic hydrogen evolution (HER), which may explain the improvement in performance by phase transition or structural remodeling. However, the intrinsic behavior of these catalysts (dynamic evolution of the interface under bias, structural/morphological transformation, stability) has not been clearly monitored, while the operando technology does well in capturing the dynamic changes in the reaction process in real time to determine the actual active site. In this paper, nitrogen-doped molybdenum atom-clusters on Ti3 C2 TX (MoACs /N-Ti3 C2 TX ) is used as a model catalyst to reveal the dynamic evolution of MoAcs on Ti3 C2 TX during the HER process. Operando X-ray absorption structure (XAS) theoretical calculation and in situ Raman spectroscopy showed that the Mo cluster structure evolves to a 6-coordinated monatomic Mo structure under working conditions, exposing more active sites and thus improving the catalytic performance. It shows excellent HER performance comparable to that of commercial Pt/C, including an overpotential of 60 mV at 10 mA cm-2 , a small Tafel slope (56 mV dec-1 ), and high activity and durability. This study provides a unique perspective for investigating the evolution of species, interfacial migration mechanisms, and sources of activity-enhancing compounds in the process of electroreduction.
RESUMEN
Lactic acid bacteria consortia are commonly present in food, and some of these bacteria possess probiotic properties. However, discovery and experimental validation of probiotics require extensive time and effort. Therefore, it is of great interest to develop effective screening methods for identifying probiotics. Advances in sequencing technology have generated massive genomic data, enabling us to create a machine learning-based platform for such purpose in this work. This study first selected a comprehensive probiotics genome dataset from the probiotic database (PROBIO) and literature surveys. Then, k-mer (from 2 to 8) compositional analysis was performed, revealing diverse oligonucleotide composition in strain genomes and apparently more probiotic (P-) features in probiotic genomes than non-probiotic genomes. To reduce noise and improve computational efficiency, 87 376 k-mers were refined by an incremental feature selection (IFS) method, and the model achieved the maximum accuracy level at 184 core features, with a high prediction accuracy (97.77%) and area under the curve (98.00%). Functional genomic analysis using annotations from gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Rapid Annotation using Subsystem Technology (RAST) databases, as well as analysis of genes associated with host gastrointestinal survival/settlement, carbohydrate utilization, drug resistance and virulence factors, revealed that the distribution of P-features was biased toward genes/pathways related to probiotic function. Our results suggest that the role of probiotics is not determined by a single gene, but by a combination of k-mer genomic components, providing new insights into the identification and underlying mechanisms of probiotics. This work created a novel and free online bioinformatic tool, iProbiotics, which would facilitate rapid screening for probiotics.