Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143309

RESUMEN

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Asunto(s)
Edema Encefálico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutación/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171595

RESUMEN

The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Sustancia Blanca , Ratones , Animales , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Sustancia Blanca/patología , Destreza Motora , Modelos Animales de Enfermedad
3.
Front Neurosci ; 18: 1275744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352041

RESUMEN

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

4.
Ann Clin Transl Neurol ; 9(8): 1147-1162, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778832

RESUMEN

OBJECTIVE: Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects. METHODS: Wild-type and VWM mice were subjected to placebo, guanabenz or sephin1 treatments. Effects on clinical signs, neuropathology, and ISR deregulation were determined. Guanabenz's and sephin1's ISR-modifying effects were tested in cultured cells that expressed or lacked the α2-adrenergic receptor. RESULTS: Guanabenz improved clinical signs, neuropathological hallmarks, and ISR regulation in VWM mice, but sephin1 did not. Guanabenz's effects on the ISR in VWM mice were not replicated in cell cultures and the contribution of α2-adrenergic effects on the deregulated ISR could therefore not be assessed. INTERPRETATION: Guanabenz proved itself as a viable treatment option for VWM. The exact mechanism through which guanabenz exerts its ameliorating impact on VWM requires further studies. Sephin1 is not simply a guanabenz replacement without α2-adrenergic effects.


Asunto(s)
Guanabenzo , Sustancia Blanca , Adrenérgicos , Animales , Factor 2B Eucariótico de Iniciación/genética , Guanabenzo/análogos & derivados , Guanabenzo/farmacología , Ratones , Sustancia Blanca/patología
5.
Cancers (Basel) ; 11(2)2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30764534

RESUMEN

The lack of tumor-reactive T cells is one reason why immune checkpoint inhibitor therapies still fail in a significant proportion of melanoma patients. A vaccination that induces melanoma-specific T cells could potentially enhance the efficacy of immune checkpoint inhibitors. Here, we describe a vaccination strategy in which melanoma antigens are targeted to mouse and human CD169 and thereby induce strong melanoma antigen-specific T cell responses. CD169 is a sialic acid receptor expressed on a subset of mouse splenic macrophages that captures antigen from the blood and transfers it to dendritic cells (DCs). In human and mouse spleen, we detected CD169⁺ cells at an equivalent location using immunofluorescence microscopy. Immunization with melanoma antigens conjugated to antibodies (Abs) specific for mouse CD169 efficiently induced gp100 and Trp2-specific T cell responses in mice. In HLA-A2.1 transgenic mice targeting of the human MART-1 peptide to CD169 induced strong MART-1-specific HLA-A2.1-restricted T cell responses. Human gp100 peptide conjugated to Abs specific for human CD169 bound to CD169-expressing monocyte-derived DCs (MoDCs) and resulted in activation of gp100-specific T cells. Together, these data indicate that Ab-mediated antigen targeting to CD169 is a potential strategy for the induction of melanoma-specific T cell responses in mice and in humans.

6.
Front Immunol ; 9: 1997, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30237798

RESUMEN

CD169+ macrophages are part of the innate immune system and capture pathogens that enter secondary lymphoid organs such as the spleen and the lymph nodes. Their strategic location in the marginal zone of the spleen and the subcapsular sinus in the lymph node enables them to capture antigens from the blood and the lymph respectively. Interestingly, these specific CD169+ macrophages do not destroy the antigens they obtain, but instead, transfer it to B cells and dendritic cells (DCs) which facilitates the induction of strong adaptive immune responses. This latter characteristic of the CD169+ macrophages can be exploited by specifically targeting tumor antigens to CD169+ macrophages for the induction of specific T cell immunity. In the current study we target protein and peptide antigen as antibody-antigen conjugates to CD169+ macrophages. We monitored the primary, memory, and recall T cell responses and evaluated the anti-tumor immune responses after immunization. In conclusion, both protein and peptide targeting to CD169 resulted in strong primary, memory, and recall T cell responses and protective immunity against melanoma, which indicates that both forms of antigen can be further explored as anti-cancer vaccination strategy.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Macrófagos/inmunología , Melanoma/terapia , Péptidos/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Neoplasias Cutáneas/terapia , Linfocitos T/inmunología , Animales , Células Cultivadas , Femenino , Humanos , Memoria Inmunológica , Activación de Linfocitos , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales , Neoplasias Cutáneas/inmunología , Vacunación
7.
Cell Rep ; 22(6): 1484-1495, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425504

RESUMEN

Splenic CD169+ macrophages are located in the marginal zone to efficiently capture blood-borne pathogens. Here, we investigate the requirements for the induction of CD8+ T cell responses by antigens (Ags) bound by CD169+ macrophages. Upon Ag targeting to CD169+ macrophages, we show that BATF3-dependent CD8α+ dendritic cells (DCs) are crucial for DNGR-1-mediated cross-priming of CD8+ T cell responses. In addition, we demonstrate that CD169, a sialic acid binding lectin involved in cell-cell contact, preferentially binds to CD8α+ DCs and that Ag transfer to CD8α+ DCs and subsequent T cell activation is dependent on the sialic acid-binding capacity of CD169. Finally, functional CD169 mediates optimal CD8+ T cell responses to modified vaccinia Ankara virus infection. Together, these data indicate that the collaboration of CD169+ macrophages and CD8α+ DCs for the initiation of effective CD8+ T cell responses is facilitated by binding of CD169 to sialic acid containing ligands on CD8α+ DCs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Presentación de Antígeno/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA