Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622654

RESUMEN

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/genética , Cuerpos de Lewy/patología , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/patología , Ratones Transgénicos , Inmunoterapia/métodos , Citocinas , Inmunoglobulina G
2.
Brain Behav Immun ; 123: 254-269, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284516

RESUMEN

Synucleinopathies are age-related neurological disorders characterized by the abnormal accumulation of α-synuclein (α-syn) in neuronal and non-neuronal cells. It has been proposed that microglial cells play an important role in synucleinopathy neuroinflammation, as well as homeostatically, such as in the clearance of α-syn aggregates in the brain. Here, we examined the effects of microglia on the pathogenesis of synucleinopathies by cell depletion in a mouse model of synucleinopathies. For this purpose, we treated non-transgenic (Non-tg) and α-synuclein transgenic (α-syn-tg) mice with pexidartinib (PLX3397), a tyrosine kinase inhibitor of colony-stimulating factor 1 receptor (CSF-1R). Neuropathological and immunoblot analysis confirmed that Iba-1 immunoreactive microglial cells were decreased by 95% following PLX3397 treatment in Non-tg and α-syn-tg mice. The level of total α-syn in the Triton X-insoluble fraction of brain homogenate was significantly decreased by microglial depletion in the α-syn-tg mice, while the level of Triton X-soluble human α-syn was not affected. Furthermore, the number of p-α-syn immunoreactive inclusions was reduced in α-syn-tg mice treated with PLX3397. Microglial depletion also ameliorated neuronal and synaptic degeneration in α-syn-tg mice, thereby resulted partially improving the motor behavioral deficit in α-syn-tg mice. Moreover, we demonstrated that microglia that survived post-PLX3397 treatment (PLX-resistant microglia) have lower expressions of CSF-1R, and microglial transcriptome analysis further elucidated that PLX-resistant microglia have unique morphology and transcriptomic signatures relative to vehicle-treated microglia of both genotypes; these include differences in definitive microglial functions such as their immune response, cell mobility, cell-cell communications, and regulation of neural homeostasis. Therefore, we suggest that microglia play a critical role in the pathogenesis of synucleinopathies, and that modulation of microglial status might be an effective therapeutic strategy for synucleinopathies.

3.
bioRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39372781

RESUMEN

One of the unifying pathological hallmarks of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) is the presence of misfolded, aggregated, and often phosphorylated forms of the protein α-synuclein in neurons. α-Synuclein pathology appears in select populations of neurons throughout various cortical and subcortical regions, and little is currently known about why some neurons develop pathology while others are spared. Here, we utilized subcellular-resolution imaging-based spatial transcriptomics (IST) in a transgenic mouse model that overexpresses wild-type human α-synuclein (α-syn-tg) to evaluate patterns of selective neuronal vulnerability to α-synuclein pathology. By performing post-IST immunofluorescence for α-synuclein phosphorylated at Ser129 (pSyn), we identified cell types in the cortex and hippocampus that were vulnerable or resistant to developing pSyn pathology. Next, we investigated the transcriptional underpinnings of the observed selective vulnerability using a set of custom probes to detect genes involved in α-synuclein processing and toxicity. We identified expression of the kinase:substrate pair Plk2, which phosphorylates α-synuclein at Ser129, and human SNCA (hSNCA), as underlying the selective vulnerability to pSyn pathology. Finally, we performed differential gene expression analysis, comparing non-transgenic cells to pSyn- and pSyn+ α-syn-tg cells to reveal gene expression changes downstream of hSNCA overexpression and pSyn pathology, which included pSyn-dependent alterations in mitochondrial and endolysosomal genes. This study provides a comprehensive use case of IST, yielding new biological insights into the formation of α-synuclein pathology and its downstream effects in a PD/DLB mouse model.

4.
Sci Transl Med ; 15(695): eabq6089, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163617

RESUMEN

Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases. To test this hypothesis, we treated in vitro cellular and in vivo mouse models of DLB/PD with SKF-86002, a compound that attenuates inflammation by inhibiting p38α/ß, and then investigated the effects of this compound on p38γ and neurodegenerative pathology. We found that inhibition of p38α reduced neuroinflammation and ameliorated synaptic, neurodegenerative, and motor behavioral deficits in transgenic mice overexpressing human α-synuclein. Moreover, treatment with SKF-86002 promoted the redistribution of p38γ to synapses and reduced the accumulation of α-synuclein in mice overexpressing human α-synuclein. Supporting the potential value of targeting p38 in DLB/PD, we found that SKF-86002 promoted the redistribution of p38γ in neurons differentiated from iPS cells derived from patients with familial PD (carrying the A53T α-synuclein mutation) and healthy controls. Treatment with SKF-86002 ameliorated α-synuclein-induced neurodegeneration in these neurons only when microglia were pretreated with this compound. However, direct treatment of neurons with SKF-86002 did not affect α-synuclein-induced neurotoxicity, suggesting that SKF-86002 treatment inhibits α-synuclein-induced neurotoxicity mediated by microglia. These findings provide a mechanistic connection between p38α and p38γ as well as a rationale for targeting this pathway in DLB/PD.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA