Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Autoimmun ; 143: 103161, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141419

RESUMEN

Although type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing ß-cells, its treatment is largely restricted to exogenous insulin administration. Only few therapies targeting the autoaggressive immune system have been introduced into clinical practice or are considered in clinical trials. Here, we provide a gene expression profile of the islet microenvironment obtained by laser-dissection microscopy in an inducible mouse model. Thereby, we have identified novel targets for immune intervention. Increased gene expression of most inflammatory proteins was apparent at day 10 after T1D induction and largely paralleled the observed degree of insulitis. We further focused on genes involved in leukocyte migration, including chemokines and their receptors. Besides the critical chemokine CXCL10, we found several other chemokines upregulated locally in temporary or chronic manner. Localization of the chemokine ligand/receptor pairs to the islet microenvironment has been confirmed by RNAscope. Interference with the CXCL16-CXCR6 and CX3CL1-CX3CR1 axes, but not the CCL5-CCR1/3/5 axis, resulted in reduced insulitis and lower T1D incidence. Further, we found that the receptors for the differentially expressed chemokines CXCL10, CXCL16 and CX3CL1 are distributed unevenly among islet autoantigen-specific T cells, which explains why the interference with just one chemokine axis cannot completely abrogate insulitis and T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Ratones Endogámicos NOD , Quimiocina CXCL10/genética , Insulina/metabolismo
2.
Environ Sci Technol ; 55(17): 11646-11656, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34383486

RESUMEN

From April to June 2019, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3(HA)) microbead samples were exposed to an operational wastewater reclamation facility (WWRF) in an aerobic aeration basin in Athens, Georgia. Samples were withdrawn from the facility over a 13-week timeframe, and the particles were examined by Raman microscopy and thermogravimetric analysis/mass spectroscopy (TGA/MS) coupled with differential scanning calorimetry (DSC). The activated sludge from this facility was also used as an inoculum to examine carbon mineralization under controlled respirometry experiments to corroborate biological degradation rates determined from both the environmental and laboratory approach. Respirometry, Raman microscopy, and TGA/MS-DSC methods all measured similar biodegradation timelines for microbeads bound to an epoxy substrate, indicating that the three methods are temporally comparable and may be used to measure material biological degradation. Samples of epoxy-bound P3(HA) microbeads, free microbeads, the P3(HA) film, and poly(lactic acid) (PLA) film demonstrated carbon mineralization of 90.0, 89.4, 95.0, and 8.15%, respectively, relative to the cellulose positive control. Using a modified Gompertz growth model, the biological degradation rate coefficients (Rm) were determined for cellulose, P3(HA) film, epoxy-bound P3(HA) microbeads, and free P3(HA) microbeads and found to be 31.6, 30.2, 17.5, and 18.7 mL CO2·g-1·day-1, respectively. Moreover, P3(HA) microbeads can efficiently mineralize in WWRF infrastructure at a rate comparable to cellulose.


Asunto(s)
Laboratorios , Aguas Residuales , Ácido 3-Hidroxibutírico , Caproatos , Hidroxibutiratos , Microesferas
3.
J Bacteriol ; 200(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30150231

RESUMEN

Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.


Asunto(s)
Toxinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/genética , ARN Largo no Codificante/genética , Staphylococcus aureus/genética , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Int J Med Microbiol ; 308(6): 607-624, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29217333

RESUMEN

Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.


Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Fagosomas/microbiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Autofagia , Humanos , Evasión Inmune , Macrófagos/microbiología , Ratones , Fagocitos/microbiología , Fagocitosis , Staphylococcus aureus/genética
5.
Lancet ; 385(9978): 1672-84, 2015 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-25467577

RESUMEN

This Series paper describes programming to prevent violence against women and girls, and emphasises the importance of systematic, sustained programming across the social ecology (ie, the delicate equilibrium of interacting social, institutional, cultural, and political contexts of people's lives) to transform gender-power inequalities. Effective prevention policy and programming is founded on five core principles: first, analysis and actions to prevent violence across the social ecology (individual, interpersonal, community, and societal); second, intervention designs based on an intersectional gender-power analysis; third, theory-informed models developed on the basis of evidence; fourth, sustained investment in multisector interventions; and finally, aspirational programming that promotes personal and collective thought, and enables activism on women's and girls' rights to violence-free lives. Prevention programming of the future will depend on all of us having a vision of, and a commitment to, gender equality to make violence-free lives for women and girls a reality.


Asunto(s)
Cambio Social , Violencia/prevención & control , Salud de la Mujer , Adulto , Actitud , Niño , Cultura , Femenino , Humanos , Delitos Sexuales/prevención & control
6.
J Immunol ; 183(9): 5756-67, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19812192

RESUMEN

Engagement of the TCR or of chemokine receptors such as CXCR4 induces adhesion and migration of T cells via so-called inside-out signaling pathways. The molecular processes underlying inside-out signaling events are as yet not completely understood. In this study, we show that TCR- and CXCR4-mediated activation of integrins critically depends on the membrane recruitment of the adhesion- and degranulation-promoting adapter protein (ADAP)/Src kinase-associated phosphoprotein of 55 kDa (SKAP55)/Rap1-interacting adapter protein (RIAM)/Rap1 module. We further demonstrate that the Src homology 2 domain containing leukocyte-specific phosphoprotein of 76 kDa (SLP76) is crucial for TCR-mediated inside-out signaling and T cell/APC interaction. Besides facilitating membrane recruitment of ADAP, SKAP55, and RIAM, SLP76 regulates TCR-mediated inside-out signaling by controlling the activation of Rap1 as well as Rac-mediated actin polymerization. Surprisingly, however, SLP76 is not mandatory for CXCR4-mediated inside-out signaling. Indeed, both CXCR4-induced T cell adhesion and migration are not affected by loss of SLP76. Moreover, after CXCR4 stimulation, the ADAP/SKAP55/RIAM/Rap1 module is recruited to the plasma membrane independently of SLP76. Collectively, our data indicate a differential requirement for SLP76 in TCR- vs CXCR4-mediated inside-out signaling pathways regulating T cell adhesion and migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Quimiotaxis de Leucocito/inmunología , Activación de Linfocitos/inmunología , Antígeno-1 Asociado a Función de Linfocito/fisiología , Fosfoproteínas/fisiología , Receptores CXCR4/fisiología , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología , Receptores Toll-Like/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Adhesión Celular/genética , Adhesión Celular/inmunología , Células Cultivadas , Quimiocina CXCL12/fisiología , Quimiotaxis de Leucocito/genética , Humanos , Células Jurkat , Activación de Linfocitos/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Transducción de Señal/genética , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA