Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Trends Biochem Sci ; 49(2): 134-144, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38102017

RESUMEN

Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport. Furthermore, we discuss recent structural and biophysical studies of the ion transporter superfamily (ITS) members and highlight mechanistic principles that are relevant for further exploration of the TRAP transporter system.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Membrana , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas Portadoras/metabolismo , Bacterias/metabolismo , Transporte Biológico
2.
Mol Psychiatry ; 28(11): 4500-4511, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730845

RESUMEN

Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.


Asunto(s)
Trastorno Bipolar , Animales , Humanos , Ratones , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Mutación Missense
3.
J Biol Chem ; 297(4): 101113, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34437902

RESUMEN

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Asunto(s)
Proteínas Bacterianas/química , Carbohidrato Epimerasas/química , Hexosaminas/química , Staphylococcus aureus/enzimología , Fosfatos de Azúcar/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , Catálisis , Hexosaminas/genética , Hexosaminas/metabolismo , Mutación Missense , Conformación Proteica en Lámina beta , Dominios Proteicos , Staphylococcus aureus/genética , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo
4.
J Biol Chem ; 296: 100494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667550

RESUMEN

Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with H2O2 and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site. It is not established whether structural changes in this region, such as mixed disulfide formation, affect H2O2 reactivity. To investigate, we designed mutants to cause minimal (C172S) or substantial (C172D and C172W) structural disruption. Stopped flow kinetics and mass spectrometry showed that mutation to Ser had minimal effect on rates of oxidation and hyperoxidation, whereas Asp and Trp decreased both by ∼100-fold. To relate to structural changes, we solved the crystal structures of reduced WT and C172S Prdx2. The WT structure is highly similar to that of the published hyperoxidized form. C172S is closely related but more flexible and as demonstrated by size exclusion chromatography and analytical ultracentrifugation, a weaker decamer. Size exclusion chromatography and analytical ultracentrifugation showed that the C172D and C172W mutants are also weaker decamers than WT, and small-angle X-ray scattering analysis indicated greater flexibility with partially unstructured regions consistent with C-terminal unfolding. We propose that these structural changes around C172 negatively impact the active site geometry to decrease reactivity with H2O2. This is relevant for Prdx turnover as intermediate mixed disulfides with C172 would also be disruptive and could potentially react with peroxides before resolution is complete.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Peróxido de Hidrógeno/química , Mutación , Oxidantes/química , Oxidantes/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad
5.
Biochem J ; 478(13): 2555-2569, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34109974

RESUMEN

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Multimerización de Proteína , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Immunoblotting , Microscopía Fluorescente , Mutación , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Difracción de Rayos X
6.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34431498

RESUMEN

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Asunto(s)
Receptores de la Familia Eph/química , Receptores de la Familia Eph/metabolismo , Transducción de Señal/genética , Motivo alfa Estéril/genética , Dominios Homologos src/genética , Adenosina Trifosfato/metabolismo , Animales , Humanos , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Inhibidores de Proteínas Quinasas/metabolismo , Receptores de la Familia Eph/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera/citología , Tirosina/metabolismo
7.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31949045

RESUMEN

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Staphylococcus aureus/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Hexosaminas/química , Hexosaminas/metabolismo , Cinética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
8.
Biochem Soc Trans ; 49(6): 2711-2726, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34854920

RESUMEN

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.


Asunto(s)
Bacterias/metabolismo , Microscopía por Crioelectrón/métodos , Regulación de la Expresión Génica , Transcripción Genética , Bacterias/genética , Cristalografía por Rayos X
9.
Biochemistry ; 59(24): 2274-2288, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32478518

RESUMEN

While humans lack the biosynthetic pathways for meso-diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the Chlamydia family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from Verrucomicrobium spinosum (VsDapL), a nonpathogenic model bacterium for Chlamydia trachomatis. Complementation experiments verify that the V. spinosum dapL gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an Escherichia coli strain that is auxotrophic for meso-diaminopimelate. Kinetic studies show that VsDapL follows a Michaelis-Menten mechanism, with a KMapp of 4.0 mM toward its substrate l,l-diaminopimelate. The kcat (0.46 s-1) and the kcat/KM (115 s-1 M-1) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that VsDapL exists in a monomer-dimer self-association, with a KD2-1 of 7.4 µM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in VsDapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Transaminasas/antagonistas & inhibidores , Transaminasas/química , Verrucomicrobia/enzimología , Relación Estructura-Actividad , Transaminasas/genética , Verrucomicrobia/genética
10.
Proteins ; 88(5): 654-668, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31697432

RESUMEN

Human pathogenic and commensal bacteria have evolved the ability to scavenge host-derived sialic acids and subsequently degrade them as a source of nutrition. Expression of the Escherichia coli yjhBC operon is controlled by the repressor protein nanR, which regulates the core machinery responsible for the import and catabolic processing of sialic acid. The role of the yjhBC encoded proteins is not known-here, we demonstrate that the enzyme YjhC is an oxidoreductase/dehydrogenase involved in bacterial sialic acid degradation. First, we demonstrate in vivo using knockout experiments that YjhC is broadly involved in carbohydrate metabolism, including that of N-acetyl-d-glucosamine, N-acetyl-d-galactosamine and N-acetylneuraminic acid. Differential scanning fluorimetry demonstrates that YjhC binds N-acetylneuraminic acid and its lactone variant, along with NAD(H), which is consistent with its role as an oxidoreductase. Next, we solved the crystal structure of YjhC in complex with the NAD(H) cofactor to 1.35 Å resolution. The protein fold belongs to the Gfo/Idh/MocA protein family. The dimeric assembly observed in the crystal form is confirmed through solution studies. Ensemble refinement reveals a flexible loop region that may play a key role during catalysis, providing essential contacts to stabilize the substrate-a unique feature to YjhC among closely related structures. Guided by the structure, in silico docking experiments support the binding of sialic acid and several common derivatives in the binding pocket, which has an overall positive charge distribution. Taken together, our results verify the role of YjhC as a bona fide oxidoreductase/dehydrogenase and provide the first evidence to support its involvement in sialic acid metabolism.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , NAD/química , Oxidorreductasas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sitios de Unión , Metabolismo de los Hidratos de Carbono , Clonación Molecular , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , NAD/metabolismo , Operón , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Especificidad por Sustrato , Termodinámica
11.
Eur Biophys J ; 49(8): 819-827, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33219833

RESUMEN

Understanding how proteins interact with DNA, and particularly the stoichiometry of a protein-DNA complex, is key information needed to elucidate the biological role of the interaction, e.g. transcriptional regulation. Here, we present an emerging analytical ultracentrifugation method that features multi-wavelength detection to characterise complex mixtures by deconvoluting the spectral signals of the interaction partners into separate sedimentation profiles. The spectral information obtained in this experiment provides direct access to the molar stoichiometry of the interacting system to complement traditional hydrodynamic information. We demonstrate this approach by characterising a multimeric assembly process between the transcriptional repressor of bacterial sialic acid metabolism, NanR and its DNA-binding sequence. The method introduced in this study can be extended to quantitatively analyse any complex interaction in solution, providing the interaction partners have different optical properties.


Asunto(s)
ADN/metabolismo , Proteínas/metabolismo , Ultracentrifugación , Secuencia de Bases , ADN/genética , Unión Proteica , Soluciones
12.
EMBO Mol Med ; 16(7): 1717-1749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750308

RESUMEN

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.


Asunto(s)
Inmunohistoquímica , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Humanos , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Inmunohistoquímica/métodos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Caspasa 8/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL
13.
Trends Cell Biol ; 33(2): 162-174, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35750616

RESUMEN

The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation. Here, we describe the emerging picture of the web of proteins that tune necroptotic signal transduction and how these events have diverged across species, presumably owing to selective pressures of pathogens upon the RIPK3-MLKL protein pair.


Asunto(s)
Necroptosis , Proteínas Quinasas , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Apoptosis , Transducción de Señal , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Necrosis
14.
Nat Commun ; 14(1): 6804, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884510

RESUMEN

The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.


Asunto(s)
Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Fosforilación , Necrosis , Proteínas Quinasas/metabolismo , Dimerización , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
15.
Nat Commun ; 14(1): 6046, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770424

RESUMEN

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-ß induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.


Asunto(s)
Apoptosis , Proteínas Quinasas , Humanos , Animales , Ratones , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Membrana Celular/metabolismo , Mutación , Factores de Transcripción/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
16.
Cell Death Dis ; 13(6): 565, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739084

RESUMEN

Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.


Asunto(s)
Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Apoptosis , Humanos , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal
17.
Structure ; 30(11): 1518-1529.e5, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36108635

RESUMEN

Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Anticuerpos de Dominio Único , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Anticuerpos de Dominio Único/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
18.
Cell Death Differ ; 29(9): 1804-1815, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264780

RESUMEN

Necroptosis is a lytic programmed cell death pathway with origins in innate immunity that is frequently dysregulated in inflammatory diseases. The terminal effector of the pathway, MLKL, is licensed to kill following phosphorylation of its pseudokinase domain by the upstream regulator, RIPK3 kinase. Phosphorylation provokes the unleashing of MLKL's N-terminal four-helix bundle (4HB or HeLo) domain, which binds and permeabilizes the plasma membrane to cause cell death. The precise mechanism by which the 4HB domain permeabilizes membranes, and how the mechanism differs between species, remains unclear. Here, we identify the membrane binding epitope of mouse MLKL using NMR spectroscopy. Using liposome permeabilization and cell death assays, we validate K69 in the α3 helix, W108 in the α4 helix, and R137/Q138 in the first brace helix as crucial residues for necroptotic signaling. This epitope differs from the phospholipid binding site reported for human MLKL, which comprises basic residues primarily located in the α1 and α2 helices. In further contrast to human and plant MLKL orthologs, in which the α3-α4 loop forms a helix, this loop is unstructured in mouse MLKL in solution. Together, these findings illustrate the versatility of the 4HB domain fold, whose lytic function can be mediated by distinct epitopes in different orthologs.


Asunto(s)
Necroptosis , Proteínas Quinasas , Animales , Epítopos , Humanos , Ratones , Necrosis , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
19.
Structure ; 29(3): 197-199, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667374

RESUMEN

In this issue of Structure, Lange et al. (2020) report the structure of the pseudokinase domain of IRAK3, a negative regulator of Myddosome inflammatory signaling. The IRAK3 pseudokinase domain forms a head-to-head dimer, suggesting a new mode of kinase/pseudokinase allostery by which IRAK3 could attenuate the activity of IRAK4 in cells.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Transducción de Señal , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo
20.
Nat Commun ; 12(1): 7047, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857764

RESUMEN

Eph receptor tyrosine kinases play a key role in cell-cell communication. Lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered understanding of their signaling mechanisms. Here, we use integrative structural biology to investigate the structure and dynamics of the EphA2 intracellular region. EphA2 promotes cancer malignancy through a poorly understood non-canonical form of signaling involving serine/threonine phosphorylation of the linker connecting its kinase and SAM domains. We show that accumulation of multiple linker negative charges, mimicking phosphorylation, induces cooperative changes in the EphA2 intracellular region from more closed to more extended conformations and perturbs the EphA2 juxtamembrane segment and kinase domain. In cells, linker negative charges promote EphA2 oligomerization. We also identify multiple kinases catalyzing linker phosphorylation. Our findings suggest multiple effects of linker phosphorylation on EphA2 signaling and imply that coordination of different kinases is necessary to promote EphA2 non-canonical signaling.


Asunto(s)
Receptor EphA2/química , Serina/química , Motivo alfa Estéril/genética , Treonina/química , Células A549 , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Expresión Génica , Células HEK293 , Humanos , Modelos Moleculares , Imitación Molecular , Células PC-3 , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo , Electricidad Estática , Especificidad por Sustrato , Treonina/genética , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA