Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurol Sci ; 45(5): 2223-2243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37994963

RESUMEN

OBJECTIVE: The aim of this investigation was to determine whether a correlation could be discerned between perfusion acquired through ASL MRI and metabolic data acquired via 18F-fluorodeoxyglucose (18F-FDG) PET in mesial temporal lobe epilepsy (mTLE). METHODS: ASL MRI and 18F-FDG PET data were gathered from 22 mTLE patients. Relative cerebral blood flow (rCBF) asymmetry index (AIs) were measured using ASL MRI, and standardized uptake value ratio (SUVr) maps were obtained from 18F-FDG PET, focusing on bilateral vascular territories and key bitemporal lobe structures (amygdala, hippocampus, and parahippocampus). Intra-group comparisons were carried out to detect hypoperfusion and hypometabolism between the left and right brain hemispheres for both rCBF and SUVr in right and left mTLE. Correlations between the two AIs computed for each modality were examined. RESULTS: Significant correlations were observed between rCBF and SUVr AIs in the middle temporal gyrus, superior temporal gyrus, and hippocampus. Significant correlations were also found in vascular territories of the distal posterior, intermediate anterior, intermediate middle, proximal anterior, and proximal middle cerebral arteries. Intra-group comparisons unveiled significant differences in rCBF and SUVr between the left and right brain hemispheres for right mTLE, while hypoperfusion and hypometabolism were infrequently observed in any intracranial region for left mTLE. CONCLUSION: The study's findings suggest promising concordance between hypometabolism estimated by 18F-FDG PET and hypoperfusion determined by ASL perfusion MRI. This raises the possibility that, with prospective technical enhancements, ASL perfusion MRI could be considered an alternative modality to 18F-FDG PET in the future.


Asunto(s)
Epilepsia del Lóbulo Temporal , Radioisótopos de Flúor , Fluorodesoxiglucosa F18 , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Estudios Prospectivos , Perfusión , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
2.
Artículo en Inglés | MEDLINE | ID: mdl-38082832

RESUMEN

Epilepsy is a brain network disorder caused by discharges of interconnected groups of neurons and resulting brain dysfunction. The brain network can be characterized by intra- and inter-regional functional connectivity (FC). However, since the BOLD signal is inherently non-stationary, the FC is evidenced to be varying over time. Considering the dynamic characteristics of the functional network, we aimed to obtain dynamic brain states and their properties using network-based analyses for the comparison of healthy control and temporal lobe epilepsy (TLE) groups and also lateralization of TLE patients. We used dwelling time, transition time, and brain network connection in each state as the dynamic features for this purpose. Results showed a significant difference in dwelling time and transition time between the healthy control group and both left TLE and right TLE groups and also a significant difference in brain network connections between the left and right TLE groups.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico , Imagen por Resonancia Magnética/métodos , Lateralidad Funcional/fisiología , Encéfalo/diagnóstico por imagen , Lóbulo Temporal
3.
Heliyon ; 9(4): e14854, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37089370

RESUMEN

Background: A critical necessity before surgical resection in mesial temporal lobe epilepsy (mTLE) is lateralizing the seizure focus in the temporal lobe. This study aimed to investigate the differences in perfusion pattern changes in right and left mTLE. Methods: 42 mTLE patients (22 left and 20 right mTLE) and 14 controls were surveyed with pulsed arterial spin labeling at 3.0 T. The mean cerebral blood flow (CBF) and asymmetry index (AI) were calculated in the bilateral temporal lobe, amygdala, hippocampus, parahippocampus, and nine bilateral vascular territories ROIs. The alterations in whole-brain CBF were identified using statistical parametric mapping (SPM). Results: CBF decreased in ipsilateral sides in both epilepsy subcohorts, with right mTLE showing a significant difference in most ROIs while left mTLE exhibiting no significant change. CBF comparison of left mTLE and controls showed a significant drop in ROI analysis in left middle temporal and left intermediate posterior cerebral artery and in AI analysis in parahippocampus, distal anterior cerebral artery, distal middle cerebral artery, and intermediate anterior cerebral artery. CBF hypoperfusion was seen in ROI analysis in the left intermediate anterior cerebral artery, left middle temporal, right middle temporal, left superior temporal in the right mTLE compared to controls. Left mTLE CBF differed significantly from right mTLE CBF in right distal middle cerebral artery ROI and AI of proximal middle cerebral artery. Conclusion: Our result revealed that mTLE affects extratemporal regions and both mTLE subcohorts with different perfusion patterns, which may enhance the performance of preoperative MRI assessment in lateralization procedures.

4.
Ann Clin Transl Neurol ; 10(12): 2238-2254, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776067

RESUMEN

OBJECTIVE: To evaluate the alterations of language and memory functions using dynamic causal modeling, in order to identify the epileptogenic hemisphere in temporal lobe epilepsy (TLE). METHODS: Twenty-two patients with left TLE and 13 patients with right TLE underwent functional magnetic resonance imaging (fMRI) during four memory and four language mapping tasks. Dynamic causal modeling (DCM) was employed on fMRI data to examine effective directional connectivity in memory and language networks and the alterations in people with TLE compared to healthy individuals. RESULTS: DCM analysis suggested that TLE can influence the memory network more widely compared to the language network. For memory mapping, it demonstrated overall hyperconnectivity from the left hemisphere to the other cranial regions in the picture encoding, and from the right hemisphere to the other cranial regions in the word encoding tasks. On the contrary, overall hypoconnectivity was seen from the brain hemisphere contralateral to the seizure onset in the retrieval tasks. DCM analysis further manifested hypoconnectivity between the brain's hemispheres in the language network in patients with TLE compared to controls. The CANTAB® neuropsychological test revealed a negative correlation for the left TLE and a positive correlation for the right TLE cohorts for the connections extracted by DCM that were significantly different between the left and right TLE cohorts. INTERPRETATION: In this study, dynamic causal modeling evidenced the reorganization of language and memory networks in TLE that can be used for a better understanding of the effects of TLE on the brain's cognitive functions.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Lenguaje , Lóbulo Temporal , Cognición , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA