Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 538(7623): 109-113, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27680705

RESUMEN

Cancer stem cells (CSCs) may be responsible for tumour dormancy, relapse and the eventual death of most cancer patients. In addition, these cells are usually resistant to cytotoxic conditions. However, very little is known about the biology behind this resistance to therapeutics. Here we investigated stem-cell death in the digestive system of adult Drosophila melanogaster. We found that knockdown of the coat protein complex I (COPI)-Arf79F (also known as Arf1) complex selectively killed normal and transformed stem cells through necrosis, by attenuating the lipolysis pathway, but spared differentiated cells. The dying stem cells were engulfed by neighbouring differentiated cells through a draper-myoblast city-Rac1-basket (also known as JNK)-dependent autophagy pathway. Furthermore, Arf1 inhibitors reduced CSCs in human cancer cell lines. Thus, normal or cancer stem cells may rely primarily on lipid reserves for energy, in such a way that blocking lipolysis starves them to death. This finding may lead to new therapies that could help to eliminate CSCs in human cancers.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Lipólisis/fisiología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor 1 de Ribosilacion-ADP/antagonistas & inhibidores , Factor 1 de Ribosilacion-ADP/deficiencia , Animales , Apoptosis , Autofagia , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Proteína Coat de Complejo I/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Metabolismo Energético , Enterocitos/citología , Femenino , Tracto Gastrointestinal/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipólisis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/metabolismo , Necrosis/inducido químicamente , Células Madre Neoplásicas/efectos de los fármacos , Fagocitosis , Proteínas de Unión al GTP rac/metabolismo
2.
Exp Cell Res ; 374(2): 342-352, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553967

RESUMEN

Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a ßPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión a Telómeros/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Larva/metabolismo , Terminales Presinápticos/metabolismo , Complejo Shelterina , Transducción de Señal/fisiología , Sinapsis/fisiología
3.
Adv Exp Med Biol ; 1167: 175-190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31520355

RESUMEN

Accumulative studies suggest that a fraction of cells within a tumor, known as cancer stem cells (CSCs) that initiate tumors, show resistance to most of the therapies, and causes tumor recurrence and metastasis. CSCs could be either transformed normal stem cells or reprogrammed differentiated cells. The eventual goal of CSC research is to identify pathways that selectively regulate CSCs and then target these pathways to eradicate CSCs. CSCs and normal stem cells share some common features, such as self-renewal, the production of differentiated progeny, and the expression of stem-cell markers, however, CSCs vary from normal stem cells in forming tumors. Specifically, CSCs are normally resistant to standard therapies. In addition, CSCs and non-CSCs can be mutually convertible in response to different signals or microenvironments. Even though CSCs are involved in human cancers, the biology of CSCs, is still not well understood, there are urgent needs to study CSCs in model organisms. In the last several years, discoveries in Drosophila have greatly contributed to our understanding of human cancer. Stem-cell tumors in Drosophila share various properties with human CSCs and maybe used to understand the biology of CSCs. In this chapter, we first briefly review CSCs in mammalian systems, then discuss stem-cell tumors in the Drosophila posterior midgut and Malpighian tubules (kidney) and their unique properties as revealed by studying oncogenic Ras protein (RasV12)-transformed stem-cell tumors in the Drosophila kidney and dominant-negative Notch (NDN)-transformed stem-cell tumors in the Drosophila intestine. At the end, we will discuss potential approaches to eliminate CSCs and achieve tumor regression. In future, by screening adult Drosophila neoplastic stem-cell tumor models, we hope to identify novel and efficacious compounds for the treatment of human cancers.


Asunto(s)
Drosophila , Neoplasias/patología , Células Madre Neoplásicas/citología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Microambiente Tumoral
4.
Development ; 142(4): 644-53, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25670791

RESUMEN

Functional mature cells are continually replenished by stem cells to maintain tissue homoeostasis. In the adult Drosophila posterior midgut, both terminally differentiated enterocyte (EC) and enteroendocrine (EE) cells are generated from an intestinal stem cell (ISC). However, it is not clear how the two differentiated cells are generated from the ISC. In this study, we found that only ECs are generated through the Su(H)GBE(+) immature progenitor enteroblasts (EBs), whereas EEs are generated from ISCs through a distinct progenitor pre-EE by a novel lineage-tracing system. EEs can be generated from ISCs in three ways: an ISC becoming an EE, an ISC becoming a new ISC and an EE through asymmetric division, or an ISC becoming two EEs through symmetric division. We further identified that the transcriptional factor Prospero (Pros) regulates ISC commitment to EEs. Our data provide direct evidence that different differentiated cells are generated by different modes of stem cell lineage specification within the same tissues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Tracto Gastrointestinal/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Drosophila , Proteínas de Drosophila/genética , Femenino , Masculino , Interferencia de ARN
5.
PLoS Genet ; 11(12): e1005750, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26714316

RESUMEN

In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.


Asunto(s)
División Celular Asimétrica , Proteínas de Drosophila/metabolismo , Drosophila/genética , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Matriz Nuclear/metabolismo , Células Madre/metabolismo , Testículo/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/fisiología , Testículo/citología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
6.
Development ; 140(17): 3532-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23942514

RESUMEN

The proportion of stem cells versus differentiated progeny is well balanced to maintain tissue homeostasis, which in turn depends on the balance of the different signaling pathways involved in stem cell self-renewal versus lineage-specific differentiation. In a screen for genes that regulate cell lineage determination in the posterior midgut, we identified that the Osa-containing SWI/SNF (Brahma) chromatin-remodeling complex regulates Drosophila midgut homeostasis. Mutations in subunits of the Osa-containing complex result in intestinal stem cell (ISC) expansion as well as enteroendocrine (EE) cell reduction. We further demonstrated that Osa regulates ISC self-renewal and differentiation into enterocytes by elaborating Notch signaling, and ISC commitment to differentiation into EE cells by regulating the expression of Asense, an EE cell fate determinant. Our data uncover a unique mechanism whereby the commitment of stem cells to discrete lineages is coordinately regulated by chromatin-remodeling factors.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Homeostasis/fisiología , Intestinos/crecimiento & desarrollo , Factores de Transcripción/fisiología , Animales , Linaje de la Célula/fisiología , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cartilla de ADN/genética , Intestinos/citología , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Factores de Transcripción/metabolismo
7.
Development ; 139(21): 3917-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23048182

RESUMEN

Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Tracto Gastrointestinal/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Drosophila , Proteínas de Drosophila/genética , Tracto Gastrointestinal/citología , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/metabolismo , Factores de Transcripción/genética
9.
iScience ; 27(5): 109732, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706862

RESUMEN

In Drosophila, long noncoding RNA Hsrω rapidly assembles membraneless organelle omega speckles under heat shock with unknown biological function. Here, we identified the distribution of omega speckles in multiple tissues of adult Drosophila melanogaster and found that they were selectively distributed in differentiated enterocytes but not in the intestinal stem cells of the midgut. We mimicked the high expression level of Hsrω via overexpression or intense heat shock and demonstrated that the assembly of omega speckles nucleates TBPH for the induction of ISC differentiation. Additionally, we found that heat shock stress promoted cell differentiation, which is conserved in mammalian cells through paraspeckles, resulting in large puncta of TDP-43 (a homolog of TBPH) with less mobility and the differentiation of human induced pluripotent stem cells. Overall, our findings confirm the role of Hsrω and omega speckles in the development of intestinal cells and provide new prospects for the establishment of stem cell differentiation strategies.

10.
iScience ; 27(7): 110314, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39036040

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2024.109732.].

11.
Adv Exp Med Biol ; 786: 63-78, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696352

RESUMEN

Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.


Asunto(s)
Sistema Digestivo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre/metabolismo , Animales , Diferenciación Celular , División Celular/genética , Proliferación Celular , Sistema Digestivo/citología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Epigénesis Genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células Madre/clasificación , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Life Sci ; 328: 121902, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392777

RESUMEN

AIMS: The small GTPase protein ARF1 has been shown to be involved in the lipolysis pathway and to selectively kill stem cells in Drosophila melanogaster. However, the role of ARF1 in mammalian intestinal homeostasis remains elusive. This study aimed to explore the role of ARF1 in intestinal epithelial cells (IECs) and reveal the possible mechanism. MATERIALS AND METHODS: IEC-specific ARF1 deletion mouse model was used to evaluate the role of ARF1 in intestine. Immunohistochemistry and immunofluorescence analyses were performed to detect specific cell type markers, and intestinal organoids were cultured to assess intestinal stem cell (ISC) proliferation and differentiation. Fluorescence in situ hybridization, 16S rRNA-seq analysis, and antibiotic treatments were conducted to elucidate the role of gut microbes in ARF1-mediated intestinal function and the underlying mechanism. Colitis was induced in control and ARF1-deficient mice by dextran sulfate sodium (DSS). RNA-seq was performed to elucidate the transcriptomic changes after ARF1 deletion. KEY FINDINGS: ARF1 was essential for ISC proliferation and differentiation. Loss of ARF1 increased susceptibility to DSS-induced colitis and gut microbial dysbiosis. Gut microbiota depletion by antibiotics could rescue the intestinal abnormalities to a certain extent. Furthermore, RNA-seq analysis revealed alterations in multiple metabolic pathways. SIGNIFICANCE: This work is the first to elucidate the essential role of ARF1 in regulating gut homeostasis, and provides novel insights into the pathogenesis of intestinal diseases and potential therapeutic targets.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Células Madre Adultas , Microbioma Gastrointestinal , Intestino Delgado , Animales , Ratones , Ratones Noqueados , Intestino Delgado/citología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Factor 1 de Ribosilacion-ADP/metabolismo , Células Madre Adultas/metabolismo , Disbiosis/metabolismo , Antibacterianos/administración & dosificación , Transcripción Genética , Homeostasis , Redes y Vías Metabólicas
13.
Adv Sci (Weinh) ; 10(32): e2305089, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37786300

RESUMEN

The anti-tumor immune response relies on interactions among tumor cells and immune cells. However, the molecular mechanisms by which tumor cells regulate DCs as well as DCs regulate T cells remain enigmatic. Here, the authors identify a super signaling complex in DCs that mediates the Arf1-ablation-induced anti-tumor immunity. They find that the Arf1-ablated tumor cells release OxLDL, HMGB1, and genomic DNA, which together bound to a coreceptor complex of CD36/TLR2/TLR6 on DC surface. The complex then is internalized into the Rab7-marked endosome in DCs, and further joined by components of the NF-κB, NLRP3 inflammasome and cGAS-STING triple pathways to form a super signal complex for producing different cytokines, which together promote CD8+ T cell tumor infiltration, cross-priming and stemness. Blockage of the HMGB1-gDNA complex or reducing expression in each member of the coreceptors or the cGAS/STING pathway prevents production of the cytokines. Moreover, depletion of the type I IFNs and IL-1ß cytokines abrogate tumor regression in mice bearing the Arf1-ablated tumor cells. These findings reveal a new molecular mechanism by which dying tumor cells releasing several factors to activate the triple pathways in DC for producing multiple cytokines to simultaneously promote DC activation, T cell infiltration, cross-priming and stemness.


Asunto(s)
Neoplasias Colorrectales , Proteína HMGB1 , Animales , Ratones , Linfocitos T CD8-positivos , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Nucleotidiltransferasas/metabolismo , Factor 1 de Ribosilacion-ADP
14.
Natl Sci Rev ; 10(12): nwad222, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38239560

RESUMEN

Neuroimmune connections have been revealed to play a central role in neurodegenerative diseases (NDs). However, the mechanisms that link the central nervous system (CNS) and peripheral immune cells are still mostly unknown. We recently found that specific ablation of the Arf1 gene in hindbrain and spinal cord neurons promoted NDs through activating the NLRP3 inflammasome in microglia via peroxided lipids and adenosine triphosphate (ATP) releasing. Here, we demonstrate that IL-1ß with elevated chemokines in the neuronal Arf1-ablated mouse hindbrain and spinal cord recruited and activated γδ T cells in meninges. The activated γδ T cells then secreted IFN-γ that entered into parenchyma to activate the microglia-A1 astrocyte-C3-neuronal C3aR neurotoxic pathway. Remarkably, the neurodegenerative phenotypes of the neuronal Arf1-ablated mice were strongly ameliorated by IFN-γ or C3 knockout. Finally, we show that the Arf1-reduction-induced neuroimmune-IFN-γ-gliosis pathway exists in human NDs, particularly in amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unknown mechanism that links the CNS and peripheral immune cells to promote neurodegeneration.

15.
Blood ; 116(16): 2921-31, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20595512

RESUMEN

RapGEF2 is one of many guanine nucleotide exchange factors (GEFs) that specifically activate Rap1. Here, we generated RapGEF2 conditional knockout mice and studied its role in embryogenesis and fetal as well as adult hematopoietic stem cell (HSC) regulation. RapGEF2 deficiency led to embryonic lethality at ~ E11.5 due to severe yolk sac vascular defects. However, a similar number of Flk1(+) cells were present in RapGEF2(+/+) and RapGEF2(-/-) yolk sacs indicating that the bipotential early progenitors were in fact generated in the absence of RapGEF2. Further analysis of yolk sacs and embryos revealed a significant reduction of CD41 expressing cells in RapGEF2(-/-) genotype, suggesting a defect in the maintenance of definitive hematopoiesis. RapGEF2(-/-) cells displayed defects in proliferation and migration, and the in vitro colony formation ability of hematopoietic progenitors was also impaired. At the molecular level, Rap1 activation was impaired in RapGEF2(-/-) cells that in turn lead to defective B-raf/ERK signaling. Scl/Gata transcription factor expression was significantly reduced, indicating that the defects observed in RapGEF2(-/-) cells could be mediated through Scl/Gata deregulation. Inducible deletion of RapGEF2 during late embryogenesis in RapGEF2(cko/cko)ER(cre) mice leads to defective fetal liver erythropoiesis. Conversely, inducible deletion in the adult bone marrow, or specific deletion in B cells, T cells, HSCs, and endothelial cells has no impact on hematopoiesis.


Asunto(s)
Embrión de Mamíferos/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Factores de Transcripción GATA/genética , Eliminación de Gen , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Hígado/embriología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Saco Vitelino/anomalías , Saco Vitelino/irrigación sanguínea , Saco Vitelino/metabolismo
16.
Cell Rep ; 39(12): 110958, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732115

RESUMEN

We previously showed that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. Here we show that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. We identify an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity.


Asunto(s)
Drosophila , Lipólisis , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular , Drosophila/metabolismo , Células Madre Neoplásicas/metabolismo
17.
J Cell Mol Med ; 15(3): 468-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21155977

RESUMEN

The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.


Asunto(s)
Infertilidad Masculina/patología , Espermatogonias/citología , Células Madre/citología , Neoplasias Testiculares/patología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Infertilidad Masculina/metabolismo , Masculino , Modelos Biológicos , Espermatogonias/crecimiento & desarrollo , Espermatogonias/metabolismo , Células Madre/metabolismo , Neoplasias Testiculares/metabolismo
18.
Dev Cell ; 10(1): 117-26, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399083

RESUMEN

Stem cells will undergo self-renewal to produce new stem cells if they are maintained in their niches. The regulatory mechanisms that recruit and maintain stem cells in their niches are not well understood. In Drosophila testes, a group of 12 nondividing somatic cells, called the hub, identifies the stem cell niche by producing the growth factor Unpaired (Upd). Here, we show that Rap-GEF/Rap signaling controls stem cell anchoring to the niche through regulating DE-cadherin-mediated cell adhesion. Loss of function of a Drosophila Rap-GEF (Gef26) results in loss of both germline and somatic stem cells. The Gef26 mutation specifically impairs adherens junctions at the hub-stem cell interface, which results in the stem cells "drifting away" from the niche and losing stem cell identity. Thus, the Rap signaling/E-cadherin pathway may represent one mechanism that regulates polarized niche formation and stem cell anchoring.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Drosophila/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Testículo/citología , Animales , Animales Modificados Genéticamente , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Clonación Molecular/métodos , ARN Helicasas DEAD-box , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Receptores ErbB/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Masculino , Modelos Biológicos , Mutación/genética , ARN Helicasas/metabolismo , Factores de Transcripción STAT/metabolismo
19.
Nat Aging ; 1(11): 1024-1037, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118341

RESUMEN

Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.


Asunto(s)
Enfermedades Desmielinizantes , Inflamasomas , Ratones , Humanos , Animales , Inflamasomas/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neuronas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Lípidos
20.
Adv Sci (Weinh) ; 8(17): e2004850, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34240584

RESUMEN

Elevated Wnt/ß-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pß-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates ß-catenin at Thr40 to block its Ser33 phosphorylation by GSK3ß. Thus, MST4 mediates an active process that prevents ß-catenin from binding to and being degraded by ß-TrCP, leading to accumulation and full activation of ß-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or ß-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pß-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for ß-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Intestinos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Células Madre/metabolismo , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA