Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403615, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096113

RESUMEN

The synthesis of stable polynitrogen compounds with high-energy density has long been a major challenge. The cyclo-pentazolate anion (cyclo-N5 -) is successfully converted into aromatic and structurally symmetric bipentazole (N10) via electrochemical synthesis using highly conductive multi-walled carbon nanotubes (MWCNTs) as the substrate and sodium pentazolate hydrate ([Na(H2O)(N5)]·2H2O) as the raw material. Attenuated total refraction Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and density functional theory calculations confirmed the structure and homogeneous distribution of N10 in the sidewalls of the MWCNTs (named MWCNT-N10-n m). The MWCNT-N10-2.0 m is further used as a catalyst for electrochemical oxygen reduction to synthesize hydrogen peroxide from oxygen with a two-electron selectivity of up to 95%.

2.
Org Biomol Chem ; 21(16): 3453-3464, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039337

RESUMEN

A series of iso-allo-DNJ and L-isoDALDP derivatives were synthesized from dithioacetal 16 with sequential and highly diastereoselective Ho and Henry reactions, and aziridinium intermediate-mediated ring rearrangement as key steps. Glycosidase inhibition assay found four of them as selective α-glucosidase inhibitors, and the less substituted compound 30 showed more potent α-glucosidase inhibition (IC50 = 9.3 µM) than the others. Molecular docking study revealed different docking modes of the iso-allo-DNJ and L-isoDALDP derivatives from their parent compounds, and also the similarity of compound 30 to isofagomine.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores de Glicósido Hidrolasas/farmacología , Glicósido Hidrolasas , Estructura Molecular
3.
Sci Rep ; 14(1): 10120, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698073

RESUMEN

In this work, we realized the detection of diamino-pentazolium cation (DAPZ+) in the reaction solution experimentally and proved it to be meta-diamino-pentazole based on the transition state theory. Quantum chemical methods were used to predict its spectral properties, charge distribution, stability and aromaticity. Considering that DAPZ+ has excellent detonation properties, it was further explored by assembling it with N5-, N3- and C(NO2)3- anions, respectively. The results show a strong interaction between DAPZ+ and the three anions, which will have a positive effect on its stability. Thanks to the high enthalpy of formation and density, the calculated detonation properties of the three systems are exciting, especially [DAPZ+][N5-] (D: 10,016 m·s-1; P: 37.94 GPa), whose actual detonation velocity may very likely exceed CL-20 (D: 9773 m·s-1). There is no doubt that this work will become the precursor for the theoretical exploration of new polynitrogen ionic compounds.

4.
ACS Appl Mater Interfaces ; 15(35): 41580-41589, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37609932

RESUMEN

A series of high-nitrogen compounds, including a unique molecule 2,2'-azobis(1,5'-bitetrazole) with a branched N10 chain and 1,5'-bitetrazolate-2N-oxides, were synthesized successfully based on C-N-linked 1,5'-bistetrazoles using azo coupling of N-amine bonds and N-oxide introduction strategies. All compounds were characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and differential scanning calorimetry, in which the structures of five compounds were further determined by single-crystal X-ray diffraction analysis (2, T-N10B, 3a, 3b, and THX). The nitrogen contents of these five compounds range from 63.62 (THX) to 83.43% (T-N10B), which are much higher than that of CL-20 (38.34%). The heat of formation for the prepared compounds was calculated by using the Gaussian 09 program, with T-N10B having the highest value of 5.13 kJ g-1, about 6 times higher than that of CL-20 (0.83 kJ g-1). The calculated detonation performances by EXPLO5 v6.05.04 show that THX has excellent detonation performance (D = 9581 m s-1, P = 35.93 GPa) and a remarkable specific impulse (Isp = 284.9 s).

5.
Chemosphere ; 287(Pt 2): 132145, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34500330

RESUMEN

Lake sediment and algal sludge with large output posed significant environmental risks. In this work, an idea of co-utilization of both solid wastes for the production of ceramsite (a sort of porous lightweight aggregates as building materials) was proposed and validated for the first time. The treatment process contained a dewatering step by a flocculation-pressure filtration method, and a sintered ceramsite preparation step. Effects of flocculant type and dosage on the dewatering performance were studied in the first step. An environmental-friendly amphoteric starch flocculant with a dosage of 12 mg/(g dried sample) was found to achieve the best dewatering performance. Effects of raw material mass ratio, sintering temperature and time in the second step were investigated. Under the optimal conditions (60 wt% of dewatered sediment; 20 wt% of dewatered algal sludge; 20 wt% of additives (fly ash: calcium oxide: kaolin = 2:1:2); sintering temperature: 1100 °C; time: 35 min), the obtained ceramsite met the Chinese National Standard as a qualified building material, with reliable environmental safety according to the leaching results for both heavy metals and microcystins. Both environmental and economic benefits of the proposed treatment were assessed. The process completely followed the rules of "reduction, harmlessness and resource utilization" for solid waste treatment and disposal; Meanwhile, the profit of the proposed ceramsite production could be more than 2.3 US dollar/m3. The co-utilization method in this work acted as a good example for the comprehensive management of solid wastes in water-rich areas.


Asunto(s)
Cianobacterias , Lagos , Ceniza del Carbón , Mezclas Complejas , Porosidad , Aguas del Alcantarillado
6.
ACS Appl Bio Mater ; 3(5): 2910-2919, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025338

RESUMEN

In light of growing concerns about the formation of nitrogen-based disinfection byproducts (N-DBP) and the possible contribution from the use of quaternary-ammonium-containing flocculants, there is growing interest in the alternative use of quaternary phosphonium salts, which have been reported to have a lower DBP formation potential, stronger cationic properties, lower cytotoxicity, and greater stability. In this study, the performance of N-free quaternary-phosphonium-modified starch flocculants (S-BTP), synthesized through a facile one-step method using commercially available raw materials, in the treatment of bacteria-laden waters (E. coli as the model bacteria) was assessed in both jar tests and a bench-scale continuous-flow flocculation-sedimentation-ultrafiltration process. In jar tests, the effects of the cationic degree of substitution (DS) and dosage of the flocculant, solution pH, and presence of model contaminants on treatment performance were studied. One particular flocculant (S-BTP3), with a DS of 19.3%, displayed high removal efficiencies of E. coli, turbidity, and UV254 from water, comparable with those of ammonium-based analogues and conventional alum, via a combination of charge attraction, polymer bridging, and antibacterial effects. S-BTP3 also possessed better bactericidal properties (99.4% of E. coli killed) than alum (41.4% killed) and did not cause the release of intracellular substances into the treated water. In the continuous-flow flocculation-sedimentation-UF tests, S-BTP3 was superior to alum in the flocculation and antibacterial performance, and in mitigating UF membrane fouling. The results have clearly demonstrated the multiple benefits of the use of N-free cationic starch flocculants in water treatment as an alternative to conventional chemicals.

7.
Water Res ; 177: 115775, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278991

RESUMEN

In this paper we describe the preparation and testing of a new class of chitosan-based flocculants for the treatment of surface waters containing antibiotic compounds. Three forms of moderately hydrophobic chitosan flocculants (MHCs) were prepared by chemically grafting hydrophobic branches with different lengths onto hydrophilic chitosan and these were evaluated by jar tests and a bench-scale continuous flow ultrafiltration (UF) membrane process with coagulation/sedimentation pre-treatment. Tests were conducted using both synthetic and real surface water in which norfloxacin and tylosin were added as representative antibiotics at an initial concentration of 0.1 µg/L. In jar tests, the MHCs achieved similar high removal efficiencies (REs) of turbidity and UV254 absorbance, but much higher REs of the two antibiotics (71.7-84.7% and 68.7-76.6% for synthetic and river waters, respectively), compared to several commercial flocculants; the superior performance was attributed to an enhanced hydrophobic interaction and H-bonding between the flocculants and antibiotics. The presence of suspended kaolin particles and humic acid enhanced the antibiotic removal, speculated to be through MHC bridging of the kaolin/humic acid and antibiotic molecules. In the continuous flow tests involving flocculation/sedimentation-UF for 40 days, an optimal MHC achieved a much greater performance than polyaluminium chloride in terms of the overall removal of antibiotics (RE (norfloxacin) of ∼90% and RE (tylosin) of ∼80%) and a greatly reduced rate of membrane fouling; the latter resulting from a more porous and looser structure of cake layer, caused by a surface-modification-like effect of residual MHC on the hydrophobic PVDF membrane. The results of this study have shown that MHCs offer a significant advance over the use of existing flocculants for the treatment of surface water.


Asunto(s)
Quitosano , Purificación del Agua , Antibacterianos , Floculación , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA