Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Tissue Res ; 395(1): 63-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040999

RESUMEN

To investigate the effect and mechanism of Huogu injection (HG) on steroid-induced osteonecrosis of the femoral head (SONFH), we established a SONFH model in rabbits using horse serum and dexamethasone (DEX) and applied HG locally at the hip joint. We evaluated the therapeutic efficacy at 4 weeks using scanning electron microscopy (SEM), micro-CT, and qualitative histology including H&E, Masson's trichrome, ALP, and TUNEL staining. In vitro, we induced osteogenic differentiation of bone marrow stromal cells (BMSCs) and performed analysis on days 14 and 21 of cell differentiation. The findings, in vivo, including SEM, micro-CT, and H&E staining, showed that HG significantly maintained bone quality and trabecular number. ALP staining indicated that HG promoted the proliferation of bone cells. Moreover, the results of Masson's trichrome staining demonstrated the essential role of HG in collagen synthesis. Additionally, TUNEL staining revealed that HG reduced apoptosis. ALP and ARS staining in vitro confirmed that HG enhanced osteogenic differentiation and mineralization, consistent with the WB and qRT-PCR analysis. Furthermore, Annexin V-FITC/PI staining verified that HG inhibited osteoblast apoptosis, in agreement with the WB and qRT-PCR analyses. Furthermore, combined with the UPLC analysis, we found that naringin enhanced the osteogenic differentiation and accelerated the deposition of calcium phosphate. Salvianolic acid B protected osteoblasts derived from BMSCs against GCs-mediated apoptosis. Thus, this study not only reveals the mechanism of HG in promoting osteogenesis and anti-apoptosis of osteoblasts but also identifies the active-related components in HG, by which we provide the evidence for the application of HG in SONFH.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Conejos , Diferenciación Celular , Osteoblastos , Apoptosis , Células Cultivadas
2.
J Sci Food Agric ; 103(14): 7273-7283, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450639

RESUMEN

BACKGROUND: Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related ß-galactosidase (SA-ß-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS: Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-ß-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION: Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/genética , Ecosistema , ARN Ribosómico 16S , FN-kappa B/genética , Homeostasis , Transducción de Señal , Inflamación
3.
J Cell Mol Med ; 26(9): 2607-2619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35365949

RESUMEN

Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)-mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)-stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy-related proteins. Meanwhile, PM markedly down-regulated AngII-induced translocation of p-STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I-201 or siRNA-mediated depleted expression could alleviate AngII-induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy-related proteins and phosphorylated STAT3 in STAT3-overexpressing cells, indicating that PM protected against AngII-induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC-induced cardiac hypertrophy, as determined by down-regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy-related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.


Asunto(s)
Glicósidos Cardíacos , Insuficiencia Cardíaca , Animales , Glicósidos Cardíacos/metabolismo , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/uso terapéutico , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
4.
Circulation ; 144(10): 788-804, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34162222

RESUMEN

BACKGROUND: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca2+ and regulate its release in the sarcoplasmic reticulum of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often experience arrhythmia for which the underlying mechanism remains unknown. METHODS: Working hearts from conventional (Casq1-KO) and cardiac-specific (Casq1-CKO) Casq1 knockout mice were monitored in vivo and ex vivo by ECG and electric mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes with knockdown, overexpression, or truncation of the Casq1 gene. Conformational change in both Casqs was determined by cross-linking Western blot analysis. RESULTS: Like patients with MH/EHS, Casq1-KO and Casq1-CKO mice had faster basal heart rate and ventricular tachycardia on exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electric triggering also occurred in Casq1-KO hearts ex vivo. Accordingly, the ventricular cardiomyocytes from Casq1-CKO mice displayed dantrolene-sensitive increased Ca2+ waves and diastole premature Ca2+ transients/oscillations on isoflurane. Neonatal rat ventricular myocytes with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients on isoflurane, whereas cells overexpressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with ryanodine receptor-2 in the ventricular sarcoplasmic reticulum. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41 °C induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/ryanodine receptor-2 interaction and increased ryanodine receptor-2 activity in the ventricle. CONCLUSIONS: Casq1 is expressed in the heart, where it regulates sarcoplasmic reticulum Ca2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on ryanodine receptor-2-mediated Ca2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.


Asunto(s)
Calsecuestrina/genética , Hipertermia Maligna/etiología , Miocardio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/fisiopatología , Hipertermia Maligna/diagnóstico , Ratones , Ratones Noqueados , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/fisiología , Taquicardia Ventricular , Tórax
5.
Pharm Biol ; 60(1): 2355-2366, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36444944

RESUMEN

CONTEXT: Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE: This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS: The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS: In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 µg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION: XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Neumonía Viral , Ratones , Ratas , Animales , Humanos , Virus Sincitiales Respiratorios , Subtipo H3N2 del Virus de la Influenza A , Subtipo H7N3 del Virus de la Influenza A , Lipopolisacáridos , Xilenos , Ratones Endogámicos BALB C , Citocinas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
6.
Pharm Biol ; 60(1): 2025-2039, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36263579

RESUMEN

CONTEXT: Bazi Bushen capsule (BZBS) has anti-ageing properties and is effective in enhancing memory. OBJECTIVE: To find evidence supporting the mechanisms and biomarkers by which BZBS functions. MATERIALS AND METHODS: Male C57BL/6J mice were randomly divided into five groups: normal, ageing, ß-nicotinamide mononucleotide capsule (NMN), BZBS low-dose (LD-BZ) and BZBS high-dose (HD-BZ). The last four groups were subcutaneously injected with d-galactose (d-gal, 100 mg/kg/d) to induce the ageing process. At the same time, the LD-BZ, HD-BZ and NMN groups were intragastrically injected with BZBS (1 and 2 g/kg/d) and NMN (100 mg/kg/d) for treatment, respectively. After 60 days, the changes in overall ageing status, brain neuron morphology, expression of p16INK4a, proliferating cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba1), postsynaptic density protein 95 (PSD95), CD11b, Arg1, CD206, Trem2, Ym1 and Fizz1, and the senescence-associated secretory phenotype (SASP) factors were observed. RESULTS: Compared with the mice in the ageing group, the HD-BZ mice exhibited obvious improvements in strength, endurance, motor coordination, cognitive function and neuron injury. The results showed a decrease in p16INK4a, Iba1 and the upregulation of PCNA, PSD95 among brain proteins. The brain mRNA exhibited downregulation of Iba1 (p < 0.001), CD11b (p < 0.001), and upregulation of Arg1 (p < 0.01), CD206 (p < 0.05), Trem2 (p < 0.001), Ym1 (p < 0.01), Fizz1 (p < 0.05) and PSD95 (p < 0.01), as well as improvement of SASP factors. CONCLUSIONS: BZBS improves cognitive deficits via inhibition of cellular senescence and microglia activation. This study provides experimental evidence for the wide application of BZBS in clinical practice for cognitive deficits.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Galactosa , Animales , Masculino , Ratones , Calcio , Senescencia Celular , Cognición , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/farmacología , Homólogo 4 de la Proteína Discs Large , Glicoproteínas de Membrana/farmacología , Ratones Endogámicos C57BL , Microglía/metabolismo , Mononucleótido de Nicotinamida/farmacología , Antígeno Nuclear de Célula en Proliferación , Receptores Inmunológicos , ARN Mensajero
7.
Pharm Biol ; 60(1): 274-281, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35138995

RESUMEN

CONTEXT: Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE: To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS: C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS: In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1ß (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1ß (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1ß (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION: JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hepatocitos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Piroptosis/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Glucosa/metabolismo , Células Hep G2 , Hepatocitos/patología , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
8.
J Am Chem Soc ; 142(13): 6236-6243, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159954

RESUMEN

Organic-inorganic ABX3 (A, B = cations, X = anion) hybrids with perovskite structure have recently attracted tremendous interest due to their structural tunability and rich functional properties, such as ferroelectricity. However, ABX3 hybrid ferroelectrics with other structures have rarely been reported. Here, we successfully designed an ABX3 hybrid ferroelectric [(CH3)3NCH2F]ZnCl3 with a spontaneous polarization of 4.8 µC/cm2 by the molecular modification of [(CH3)4N]ZnCl3 through hydrogen/halogen substitution. It is the first zinc halide ABX3 ferroelectric, which contains one-dimensional [ZnCl3]-n chains of corner-sharing ZnCl4 tetrahedra, distinct from the anionic framework of corner-sharing or face-sharing BX6 octahedra in the ABX3 perovskites. From zero dimension to one dimension, the high symmetry of ZnCl4 tetrahedra is broken, and all of them align along one direction to form a polar [ZnCl3]-n chain, beneficial to the generation of ferroelectricity. This finding provides an efficient polar anionic framework for enriching the family of hybrid ferroelectrics by assembling with various cations and should inspire further exploration of new classes of organic-inorganic ABX3 ferroelectrics.

9.
Pharm Dev Technol ; 25(9): 1127-1138, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32729758

RESUMEN

Ginsenoside compound K (CK) is a major ginsenoside metabolite of protopanaxadiol, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the therapeutic application of CK is hampered by its physicochemical characteristics and low oral bioavailability (BA). The present work aims at the preparation of CK to improve its dissolution and enhance the oral BA for the management of arrhythmia by using self-nanomicellizing solid dispersion system (SSD). The formulations were characterized by advanced techniques like DSC, XRD, FTIR, SEM and XRD. In the in vivo pharmacokinetic study, UPLC-MS/MS was used to measure the concentration of CK in plasma. Mapping Lab was applied in the experiment of perfused intact hearts to determine the ventricular rate and ventricular conduction velocity. The solubility of CK-SSD8 was 4658.11 ± 6.66 µg/ml, which is 130-fold than free CK, and the dissolution rate was faster than any other dosage forms. The average diameters of CK-SSD were smaller than 100 nm. The in vivo pharmacokinetic study revealed that the AUC(0-24) of CK-SSD8 formulation was 2.02-fold higher than pure CK. Moreover, the study performed to evaluate the efficiency in arrhythmia treatment showed a reduced ventricular rate and ventricular conduction velocity. Thus, CK-SSD could serve as potential carrier candidate in improving the clinical application of CK.


Asunto(s)
Ginsenósidos/química , Nanopartículas/química , Solubilidad/efectos de los fármacos , Administración Oral , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Disponibilidad Biológica , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Portadores de Fármacos/química , Ginsenósidos/farmacocinética , Ginsenósidos/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
10.
Inorg Chem ; 57(5): 2377-2380, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29443522

RESUMEN

Three coordination polymers (CPs) with square-planar CuII/NiIIN4 subunits were formed in one step by subcomponent self-assembly, giving rise to an unprecedented linking variety of in situ embedded metalloligands and CuI clusters. All CPs exhibit unusual visible-light adsorption. Enhanced photocatalytic activity and high selectivity were observed in the oxidation of benzene under visible-light irradiation.

11.
Inorg Chem ; 57(11): 6198-6201, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29781597

RESUMEN

With methylthio groups flanking the carboxyl groups, the 3,3',5,5'-tetrakis(methylthio)biphenyl dicarboxylate (TMBPD) linker forms a zirconium(IV) carboxylate porous framework featuring the topology of the UiO-67 prototype, i.e., with a face-centered-cubic array of the Zr6O4(OH)4 clusters. Thioether functionalization proves valuable because the ZrTMBPD crystal is found to be exceptionally stable not only upon long-term exposure to air but also in boiling water and a broad range of pH conditions. The hydrophobicity of the metal-organic framework can also be tuned by simple H2O2 oxidation, as illustrated in the water contact-angle measurement of the pristine and H2O2-treated ZrTMBPD solid.

12.
J Am Chem Soc ; 138(45): 14852-14855, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27794594

RESUMEN

We report the dramatic triggering of structural order in a Zr(IV)-based metal-organic framework (MOF) through docking of HgCl2 guests. Although as-made crystals were unsuitable for single crystal X-ray diffraction (SCXRD), with diffraction limited to low angles well below atomic resolution due to intrinsic structural disorder, permeation of HgCl2 not only leaves the crystals intact but also resulted in fully resolved backbone as well as thioether side groups. The crystal structure revealed elaborate HgCl2-thioether aggregates nested within the host octahedra to form a hierarchical, multifunctional net. The chelating thioether groups also promote Hg(II) removal from water, while the trapped Hg(II) can be easily extricated by 2-mercaptoethanol to reactivate the MOF sorbent.

13.
Can J Physiol Pharmacol ; 93(4): 215-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25494655

RESUMEN

The phytoestrogen genistein (GST) and magnesium have been independently shown to regulate vascular tone; however, their individual vasodilatory effects are limited. The aim of this study was to examine the combined effects of GST plus magnesium on vascular tone in mesenteric arteries. The effects of pretreatment with GST (0-200 µmol/L), MgCl2 (0-4.8 mmol/L) and GST plus MgCl2 on 10 µmol/L phenylephrine (PE) precontracted mesenteric arteries in rats were assessed by measuring isometric force. BK(Ca) currents were detected by the patch clamp method. GST caused concentration- and partial endothelium-dependent relaxation. Magnesium resulted in dual adjustment of vascular tone. Magnesium-free solution eliminated the vasodilatation of GST in both endothelium-intact and denuded rings. GST (50 µmol/L) plus magnesium (4.8 mmol/L) caused stronger relaxation in both endothelium-intact and denuded rings. Pretreatment with the nitric oxide synthase (NOS) inhibitor L-N-nitroarginine methyl ester (L-NAME, 100 µmol/L) significantly inhibited the effects of GST, high magnesium, and the combination of GST and magnesium. BK(Ca) currents were amplified to a greater extent when GST (50 µmol/L) was combined with 4.8 versus 1.2 mmol/L Mg(2+). Our data suggest that GST plus magnesium provides enhanced vasodilatory effects in rat mesenteric arteries compared with that observed when either is used separately, which was related to an eNOS pathway and BK(Ca) current amplification.


Asunto(s)
Genisteína/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Magnesio/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fitoestrógenos/metabolismo , Vasodilatación , Animales , Suplementos Dietéticos , Endotelio Vascular/fisiología , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Contracción Isométrica/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Arteria Mesentérica Superior , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Concentración Osmolar , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
14.
J Asian Nat Prod Res ; 17(5): 559-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26166310

RESUMEN

Four spiroalkaloids, including a new compound shensongine A (1), were isolated from the anti-arrhythmic TCM formula Shensong Yangxin capsule. Their structures were determined on the basis of spectroscopic analysis. Compounds 1 and 3 displayed cardiovascular activities by shortened APD in rat myocardial cells. These compounds were possibly generated from precursors in different composed herbal medicines during the processing of the TCM formula.


Asunto(s)
Alcaloides/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Compuestos de Espiro/aislamiento & purificación , Alcaloides/química , Alcaloides/farmacología , Animales , Antiarrítmicos/química , Antiarrítmicos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Ratas , Compuestos de Espiro/química , Compuestos de Espiro/farmacología
15.
Brain Res ; 1824: 148676, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956747

RESUMEN

The olfactory bulbectomy (OBX) animal model of depression reproduces the behavioral and neurochemical changes observed in depressed patients. We assessed the therapeutic effects of the Jieyu Chufan (JYCF) capsule on OBX rats. JYCF ameliorated the hedonic and anxiety-like behavior of OBX rats and attenuated the cortical and hippocampal damage. JYCF enhanced the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and adiponectin (ADPN) in the cortex and hippocampus of OBX rats. JYCF also reduced cortisol levels and restored the levels of excitatory neurotransmitters, such as 5-hydroxytryptamine (5-HT), acetylcholine (ACH), and glutamic acid (Glu), in the brain tissue of OBX rats. Our results suggest that JYCF preserves the synaptic structure by increasing the levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) and alleviates the histological alterations of brain tissue by activating AKT/PKA-CREB-BDNF pathways, and by upregulating ADPN and FGF2 expression in OBX rats. JYCF exerts multiple therapeutic effects on depression, including modulating neurotransmitters, repairing neuronal damage, and maintaining synaptic integrity. These findings support the potential of JYCF as a novel antidepressant agent with therapeutic effects on depression and related neurological disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Humanos , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neurotransmisores/metabolismo , Bulbo Olfatorio/metabolismo , Modelos Animales de Enfermedad
16.
Heliyon ; 10(16): e35793, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220957

RESUMEN

This study explores the mechanism by which obstructive jaundice (OJ) induces liver damage through pyroptosis. We induced OJ in rats via bile duct ligation and assessed liver damage using serum biochemical markers and histological analysis of liver tissue. Pyroptosis was investigated through immunofluorescence, ELISA, Western blot, and quantitative RT-PCR techniques. Additionally, we examined intestinal function and fecal microbiota alterations in the rats using 16S rDNA sequencing. In vitro experiments involved co-culturing Kupffer cells and hepatocytes, which were then exposed to bile and lipopolysaccharide (LPS). Our findings indicated that OJ modified the gut microbiota, increasing LPS levels, which, in conjunction with bile, initiated a cycle of inflammation, fibrosis, and cell death in the liver. Mechanistically, OJ elevated necrotic markers such as ATP, which in turn activated pyroptotic pathways. Increased levels of pyroptosis-related molecules, including NLRP3, caspase-1, gasdermin D, and IL-18, were confirmed. In our co-cultured cell model, bile exposure resulted in cell death and ATP release, leading to the activation of the NLRP3 inflammasome and its downstream effectors, caspase-1 and IL-18. The combination of bile and LPS significantly intensified pyroptotic responses. This study is the first to demonstrate that LPS and bile synergistically exacerbate liver injury by promoting necrosis and pyroptosis, unveiling a novel mechanism of OJ-associated hepatic damage and suggesting avenues for potential preventive or therapeutic interventions.

17.
J Inflamm Res ; 17: 4389-4403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994468

RESUMEN

Background: The LuoBiTong (LBT) capsule, a novel traditional Chinese medicine formulation, is currently in Phase III clinical trials. Preliminary preclinical and Phase II clinical studies suggest its efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying mechanisms of its action remain to be elucidated.This research aims to explore the effects and mechanisms of LBT in conjunction with a maintenance dose of methotrexate (M-MTX) on RA. Methods: A Collagen-Induced Arthritis (CIA) mouse model was used to evaluate the anti-RA effects of LBT combined with M-MTX. Assessments included foot swelling, arthritis scoring, serum inflammatory factor analysis, and histopathological examination of the foot. These effects were compared with those of high-dose MTX (H-MTX). Network pharmacology was employed to construct a compound-target network for RA, based on drug composition, to predict its potential mechanism of action. Flow cytometry, Western Blot, and immunohistochemical analyses in animal models identified multiple inflammatory pathways targeted by LBT to augment the anti-RA effects of MTX. Results: The study revealed that LBT combined with M-MTX significantly alleviated CIA-induced arthritis without adverse effects. The combination of LBT and M-MTX showed similar or superior efficacy in regulating macrophage polarization, NF-κB, MAPK signaling pathways, and in the suppression of TH-17 expression in proinflammatory cells. These findings suggest that LBT may exert a multi-pathway therapeutic effect in RA treatment. The predicted pharmacological targets and mechanisms align well with this hypothesis. Conclusion: LBT, when combined with MTX, enhances the anti-RA effect by targeting multiple inflammatory pathways, demonstrating significant therapeutic potential.

18.
Br J Pharmacol ; 181(20): 3976-3992, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38922702

RESUMEN

BACKGROUND AND PURPOSE: Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH: GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS: GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS: Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Ácido Glicirretínico , Factor 3 Regulador del Interferón , Proteínas de la Membrana , Nucleotidiltransferasas , SARS-CoV-2 , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Proteínas de la Membrana/metabolismo , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , SARS-CoV-2/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , COVID-19/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Antivirales/farmacología , Masculino , Simulación del Acoplamiento Molecular
19.
Neuroscience ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39401739

RESUMEN

This study aims to explore the neuroprotective effects of scalp Electroacupuncture (EA) on ischemic stroke, with a specific focus on the role of electrical stimulation (ES). Employing a rat model of middle cerebral artery occlusion (MCAO), we used methods such as Triphenyl tetrazolium chloride staining, micro-CT scanning, Enzyme linked immunosorbent assay (ELISA), and immunofluorescence to assess the impacts of EA. We further conducted RNA-seq analysis and in vitro experiments with organotypic brain slices and cerebral organoids to explore the underlying mechanisms. Our research revealed that EA notably reduced cerebral infarct volume and improved regional cerebral blood flow in rats following MCAO. Micro-CT imaging showed improved vascular integrity in EA-treated groups. Histological analyses, including HE staining, indicated reduced brain tissue damage. ELISA demonstrated a decrease in pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, suggesting improved blood-brain barrier function. Immunofluorescence and Western blot analyses revealed that EA treatment significantly inhibited microglial and astrocytic overactivation. RNA-seq analysis of brain tissues highlighted a downregulation of immune pathways and inflammatory responses, confirming the neuroprotective role of EA. This was further corroborated by in vitro experiments using organotypic brain slices and cerebral organoids, which showcased the efficacy of electrical stimulation in reducing neuroinflammation and protecting neuronal cells. The study highlights the potential of scalp EA, particularly its ES component, in treating ischemic stroke. It provides new insights into the mechanisms of EA, emphasizing its efficacy in neuroprotection and modulation of neuroinflammation, and suggests avenues for optimized treatment strategies in stroke therapy.

20.
PLoS One ; 19(8): e0308871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116122

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0083132.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA