Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 579(7798): 284-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103175

RESUMEN

Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.


Asunto(s)
Epigénesis Genética , Terapia Genética , Células Supresoras de Origen Mieloide/fisiología , Neoplasias/terapia , Microambiente Tumoral , Animales , Azacitidina/farmacología , Benzamidas/farmacología , Diferenciación Celular , Movimiento Celular/efectos de los fármacos , Quimioterapia Adyuvante , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Ratones , Células Supresoras de Origen Mieloide/citología , Metástasis de la Neoplasia/terapia , Neoplasias/cirugía , Piridinas/farmacología , Receptores CCR2/genética , Receptores de Interleucina-8B/genética , Microambiente Tumoral/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 120(8): e2211703120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780522

RESUMEN

The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.


Asunto(s)
Esquistosomiasis mansoni , Animales , Ratones , Esquistosomiasis mansoni/terapia , Citocinas/metabolismo , Schistosoma mansoni , Linfocitos T Colaboradores-Inductores , Antígenos Helmínticos , Inmunoterapia
3.
Cancer Immunol Immunother ; 71(10): 2405-2420, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35217892

RESUMEN

Human gut microbial species found to associate with clinical responses to immune checkpoint inhibitors (ICIs) are often tested in mice using fecal microbiota transfer (FMT), wherein tumor responses in recipient mice may recapitulate human responses to ICI treatment. However, many FMT studies have reported only limited methodological description, details of murine cohorts, and statistical methods. To investigate the reproducibility and robustness of gut microbial species that impact ICI responses, we performed human to germ-free mouse FMT using fecal samples from patients with non-small cell lung cancer who had a pathological response or nonresponse after neoadjuvant ICI treatment. R-FMT mice yielded greater anti-tumor responses in combination with anti-PD-L1 treatment compared to NR-FMT, although the magnitude varied depending on mouse cell line, sex, and individual experiment. Detailed investigation of post-FMT mouse microbiota using 16S rRNA amplicon sequencing, with models to classify and correct for biological variables, revealed a shared presence of the most highly abundant taxa between the human inocula and mice, though low abundance human taxa colonized mice more variably after FMT. Multiple Clostridium species also correlated with tumor outcome in individual anti-PD-L1-treated R-FMT mice. RNAseq analysis revealed differential expression of T and NK cell-related pathways in responding tumors, irrespective of FMT source, with enrichment of these cell types confirmed by immunohistochemistry. This study identifies several human gut microbial species that may play a role in clinical responses to ICIs and suggests attention to biological variables is needed to improve reproducibility and limit variability across experimental murine cohorts.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Trasplante de Microbiota Fecal , Humanos , Ratones , Terapia Neoadyuvante , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados
4.
Gastroenterology ; 155(6): 1706-1715, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218667

RESUMEN

Sporadic colorectal cancer is one of the most common and lethal cancers worldwide. The locations and functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous. T-helper (Th)1 cell-mediated responses against established colorectal tumors are associated with better outcomes of patients (time of relapse-free or overall survival), whereas Th17 cell-mediated responses and production of interleukin 17A (IL17A) have been associated with worse outcomes of patients. Tumors that develop in mouse models of colorectal cancer are rarely invasive and differ in many ways from human colorectal tumors. However, these mice have been used to study the mechanisms by which Th17 cells and IL17A promote colorectal tumor initiation and growth, which appear to involve their direct effects on colon epithelial cells. Specific members of the colonic microbiota may promote IL17A production and IL17A-producing cell functions in the colonic mucosa to promote carcinogenesis. Increasing our understanding of the interactions between the colonic microbiota and the mucosal immune response, the roles of Th17 cells and IL17 in these interactions, and how these processes are altered during colon carcinogenesis, could lead to new strategies for preventing or treating colorectal cancer.


Asunto(s)
Inmunidad Adaptativa/inmunología , Neoplasias Colorrectales/inmunología , Interleucina-17/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/inmunología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones
5.
Nucleic Acids Res ; 45(14): e128, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28854731

RESUMEN

Clinical tissues are prepared for histological analysis and long-term storage via formalin fixation and paraffin embedding (FFPE). The FFPE process results in fragmentation and chemical modification of RNA, rendering it less suitable for analysis by techniques that rely on reverse transcription (RT) such as RT-qPCR and RNA-Seq. Here we describe a broadly applicable technique called 'Ligation in situ Hybridization' ('LISH'), which is an alternative methodology for the analysis of FFPE RNA. LISH utilizes the T4 RNA Ligase 2 to efficiently join adjacent chimeric RNA-DNA probe pairs hybridized in situ on fixed RNA target sequences. Subsequent treatment with RNase H releases RNA-templated ligation products into solution for downstream analysis. We demonstrate several unique advantages of LISH-based assays using patient-derived FFPE tissue. These include >100-plex capability, compatibility with common histochemical stains and suitability for analysis of decade-old materials and exceedingly small microdissected tissue fragments. High-throughput DNA sequencing modalities, including single molecule sequencing, can be used to analyze ligation products from complex panels of LISH probes ('LISH-seq'), which can be amplified efficiently and with negligible bias. LISH analysis of FFPE RNA is a novel methodology with broad applications that range from multiplexed gene expression analysis to the sensitive detection of infectious organisms.


Asunto(s)
Hibridación in Situ/métodos , Adhesión en Parafina/métodos , ARN/genética , Fijación del Tejido/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microscopía Fluorescente , ARN/análisis , ARN/metabolismo , ARN Ligasa (ATP)/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ribonucleasa H/metabolismo , Proteínas Virales/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 313(1): G39-G49, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28428350

RESUMEN

Copper-transporting ATPase 2 (ATP7B) is essential for mammalian copper homeostasis. Mutations in ATP7B result in copper accumulation, especially in the liver, and cause Wilson disease (WD). The major role of hepatocytes in WD pathology is firmly established. It is less certain whether the excess Cu in hepatocytes is solely responsible for development of WD. To address this issue, we generated a mouse strain for Cre-mediated deletion of Atp7b and inactivated Atp7b selectively in hepatocytes. Atp7bΔHep mice accumulate copper in the liver, have elevated urinary copper, and lack holoceruloplasmin but show no liver disease for up to 30 wk. Liver inflammation is muted and markedly delayed compared with the age-matched Atp7b-/- null mice, which show a strong type1 inflammatory response. Expression of metallothioneins is higher in Atp7bΔHep livers than in Atp7b-/- mice, suggesting better sequestration of excess copper. Characterization of purified cell populations also revealed that nonparenchymal cells in Atp7bΔHep liver maintain Atp7b expression, have normal copper balance, and remain largely quiescent. The lack of inflammation unmasked metabolic consequences of copper misbalance in hepatocytes. Atp7bΔHep animals weigh more than controls and have higher levels of liver triglycerides and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase. By 45 wk, all animals develop liver steatosis on a regular diet. Thus copper misbalance in hepatocytes dysregulates lipid metabolism, whereas development of inflammatory response in WD may depend on copper status of nonparenchymal cells. The implications of these findings for the cell-targeting WD therapies are discussed.NEW & NOTEWORTHY Targeted inactivation of copper-transporting ATPase 2 (Atp7b) in hepatocytes causes steatosis in the absence of inflammation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hígado Graso/etiología , Regulación de la Expresión Génica/fisiología , Hepatocitos/metabolismo , Obesidad/etiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Transporte de Catión/genética , ATPasas Transportadoras de Cobre , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados
7.
Proc Natl Acad Sci U S A ; 111(51): 18321-6, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489084

RESUMEN

Environmental factors clearly affect colorectal cancer (CRC) incidence, but the mechanisms through which these factors function are unknown. One prime candidate is an altered colonic microbiota. Here we show that the mucosal microbiota organization is a critical factor associated with a subset of CRC. We identified invasive polymicrobial bacterial biofilms (bacterial aggregates), structures previously associated with nonmalignant intestinal pathology, nearly universally (89%) on right-sided tumors (13 of 15 CRCs, 4 of 4 adenomas) but on only 12% of left-sided tumors (2 of 15 CRCs, 0 of 2 adenomas). Surprisingly, patients with biofilm-positive tumors, whether cancers or adenomas, all had biofilms on their tumor-free mucosa far distant from their tumors. Bacterial biofilms were associated with diminished colonic epithelial cell E-cadherin and enhanced epithelial cell IL-6 and Stat3 activation, as well as increased crypt epithelial cell proliferation in normal colon mucosa. High-throughput sequencing revealed no consistent bacterial genus associated with tumors, regardless of biofilm status. However, principal coordinates analysis revealed that biofilm communities on paired normal mucosa, distant from the tumor itself, cluster with tumor microbiomes as opposed to biofilm-negative normal mucosa bacterial communities also from the tumor host. Colon mucosal biofilm detection may predict increased risk for development of sporadic CRC.


Asunto(s)
Neoplasias Colorrectales/microbiología , Microbiota , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biopelículas , Colonoscopía , Humanos
8.
J Infect Dis ; 214(1): 122-9, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908749

RESUMEN

BACKGROUND: Chronic inflammation and composition of the colon microbiota have been associated with colorectal cancer in humans. The human commensal enterotoxigenic Bacteroides fragilis (ETBF) is linked to both inflammatory bowel disease and colorectal cancer and, in our murine model, causes interleukin 17A (IL-17A)-dependent colon tumors. In these studies, we hypothesized that persistent colonization by ETBF is required for tumorigenesis. METHODS: We established a method for clearing ETBF in mice, using the antibiotic cefoxitin. Multiple intestinal neoplasia mice were colonized with ETBF for the experiment duration or were cleared of infection after 5 or 14 days. Gross tumors and/or microadenomas were then evaluated. In parallel, IL-17A expression was evaluated in wild-type littermates. RESULTS: Cefoxitin treatment resulted in complete and durable clearance of ETBF colonization. We observed a stepwise increase in median colon tumor numbers as the duration of ETBF colonization increased before cefoxitin treatment. ETBF eradication also significantly decreased mucosal IL-17A expression. CONCLUSIONS: The timing of ETBF clearance profoundly influences colon adenoma formation, defining a period during which the colon is susceptible to IL-17A-dependent tumorigenesis in this murine model. This model system can be used to study the microbiota-dependent and molecular mechanisms contributing to IL-17A-dependent colon tumor initiation.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Cefoxitina/efectos adversos , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias del Colon/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Enterotoxinas/efectos adversos , Enterotoxinas/uso terapéutico , Animales , Bacteroides fragilis/química , Colon/microbiología , Neoplasias del Colon/microbiología , Humanos , Ratones
9.
Br J Cancer ; 115(3): 273-80, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27380134

RESUMEN

The gut microbiota has been hailed as an accessory organ, with functions critical to the host including dietary metabolic activities and assistance in the development of a proper functioning immune system. However, an aberrant microbiota (dysbiosis) may influence disease processes such as colorectal cancer. In this review, we discuss recent advances in our understanding of the contributions of the microbiota to prevention, initiation/progression, and treatment of colorectal cancer, with a major focus on biofilms and the antimicrobial and antitumoural immune response.


Asunto(s)
Neoplasias Colorrectales/prevención & control , Intestinos/microbiología , Microbiota , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/terapia , Progresión de la Enfermedad , Humanos
10.
Nat Med ; 12(2): 207-13, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16444266

RESUMEN

Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-gamma, depending on activation stimuli. Upon stimulation with CpG oligodeoxynucleotides, ligands for Toll-like receptor (TLR)-9, IKDCs kill typical NK target cells using NK-activating receptors. Their cytolytic capacity subsequently diminishes, associated with the loss of NKG2D receptor (also known as Klrk1) and its adaptors, Dap10 and Dap12. As cytotoxicity is lost, DC-like antigen-presenting activity is gained, associated with upregulation of surface major histocompatibility complex class II (MHC II) and costimulatory molecules, which formally distinguish them from classical NK cells. In vivo, splenic IKDCs preferentially show NK function and, upon systemic infection, migrate to lymph nodes, where they primarily show antigen-presenting cell activity. By virtue of their capacity to kill target cells, followed by antigen presentation, IKDCs provide a link between innate and adaptive immunity.


Asunto(s)
Células Dendríticas/inmunología , Interferones/biosíntesis , Células Asesinas Naturales/inmunología , Adaptación Fisiológica , Animales , Presentación de Antígeno , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células Dendríticas/clasificación , Células Dendríticas/ultraestructura , Expresión Génica , Inmunidad Innata , Técnicas In Vitro , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/ultraestructura , Listeria monocytogenes/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Oligodesoxirribonucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA