Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7850): 413-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618348

RESUMEN

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , China , Producción de Cultivos/historia , Femenino , Haplotipos/genética , Historia Antigua , Humanos , Japón , Lenguaje/historia , Masculino , Mongolia , Nepal , Oryza , Polimorfismo de Nucleótido Simple/genética , Siberia , Taiwán
2.
Chem Rev ; 124(5): 2699-2804, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422393

RESUMEN

The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.


Asunto(s)
Colorantes Fluorescentes , Medicina de Precisión , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Fluorescencia , Nanomedicina Teranóstica
3.
Proc Natl Acad Sci U S A ; 120(17): e2220982120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37075072

RESUMEN

Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5' 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as "founder" end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.


Asunto(s)
Ácidos Nucleicos Libres de Células , Humanos , Ratones , Animales , Ácidos Nucleicos Libres de Células/genética , Desoxirribonucleasas/genética , Ratones Noqueados , Endonucleasas/genética , Fragmentación del ADN , Endodesoxirribonucleasas/genética
4.
Radiology ; 310(3): e232388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470238

RESUMEN

Background Right atrial (RA) function strain is increasingly acknowledged as an important predictor of adverse events in patients with diverse cardiovascular conditions. However, the prognostic value of RA strain in patients with dilated cardiomyopathy (DCM) remains uncertain. Purpose To evaluate the prognostic value of RA strain derived from cardiac MRI (CMR) feature tracking (FT) in patients with DCM. Materials and Methods This multicenter, retrospective study included consecutive adult patients with DCM who underwent CMR between June 2010 and May 2022. RA strain parameters were obtained using CMR FT. The primary end points were sudden or cardiac death or heart transplant. Cox regression analysis was used to determine the association of variables with outcomes. Incremental prognostic value was evaluated using C indexes and likelihood ratio tests. Results A total of 526 patients with DCM (mean age, 51 years ± 15 [SD]; 381 male) were included. During a median follow-up of 41 months, 79 patients with DCM reached the primary end points. At univariable analysis, RA conduit strain was associated with the primary end points (hazard ratio [HR], 0.82 [95% CI: 0.76, 0.87]; P < .001). In multivariable Cox analysis, RA conduit strain was an independent predictor for the primary end points (HR, 0.83 [95% CI: 0.77, 0.90]; P < .001). A model combining RA conduit strain with other clinical and conventional imaging risk factors (C statistic, 0.80; likelihood ratio, 92.54) showed improved discrimination and calibration for the primary end points compared with models with clinical variables (C statistic, 0.71; likelihood ratio, 37.12; both P < .001) or clinical and imaging variables (C statistic, 0.75; likelihood ratio, 64.69; both P < .001). Conclusion CMR FT-derived RA conduit strain was an independent predictor of adverse outcomes among patients with DCM, providing incremental prognostic value when combined in a model with clinical and conventional CMR risk factors. Published under a CC BY 4.0 license. Supplemental material is available for this article.


Asunto(s)
Cardiomiopatía Dilatada , Adulto , Humanos , Masculino , Persona de Mediana Edad , Cardiomiopatía Dilatada/diagnóstico por imagen , Función del Atrio Derecho , Estudios Retrospectivos , Imagen por Resonancia Magnética , Radiografía
5.
Small ; 20(22): e2308630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100208

RESUMEN

Sodium-ion hybrid capacitors (SIHCs) have attracted much attention due to integrating the high energy density of battery and high out power of supercapacitors. However, rapid Na+ diffusion kinetics in cathode is counterbalanced with sluggish anode, hindering the further advancement and commercialization of SIHCs. Here, aiming at conversion-type metal sulfide anode, taking typical VS2 as an example, a comprehensive regulation of nanostructure and electronic properties through NH4 + pre-intercalation and Mo-doping VS2 (Mo-NVS2) is reported. It is demonstrated that NH4 + pre-intercalation can enlarge the interplanar spacing and Mo-doping can induce interlayer defects and sulfur vacancies that are favorable to construct new ion transport channels, thus resulting in significantly enhanced Na+ diffusion kinetics and pseudocapacitance. Density functional theory calculations further reveal that the introduction of NH4 + and Mo-doping enhances the electronic conductivity, lowers the diffusion energy barrier of Na+, and produces stronger d-p hybridization to promote conversion kinetics of Na+ intercalation intermediates. Consequently, Mo-NVS2 delivers a record-high reversible capacity of 453 mAh g-1 at 3 A g-1 and an ultra-stable cycle life of over 20 000 cycles. The assembled SIHCs achieve impressive energy density/power density of 98 Wh kg-1/11.84 kW kg-1, ultralong cycling life of over 15000 cycles, and very low self-discharge rate (0.84 mV h-1).

6.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35453149

RESUMEN

The roles of brain regions activities and gene expressions in the development of Alzheimer's disease (AD) remain unclear. Existing imaging genetic studies usually has the problem of inefficiency and inadequate fusion of data. This study proposes a novel deep learning method to efficiently capture the development pattern of AD. First, we model the interaction between brain regions and genes as node-to-node feature aggregation in a brain region-gene network. Second, we propose a feature aggregation graph convolutional network (FAGCN) to transmit and update the node feature. Compared with the trivial graph convolutional procedure, we replace the input from the adjacency matrix with a weight matrix based on correlation analysis and consider common neighbor similarity to discover broader associations of nodes. Finally, we use a full-gradient saliency graph mechanism to score and extract the pathogenetic brain regions and risk genes. According to the results, FAGCN achieved the best performance among both traditional and cutting-edge methods and extracted AD-related brain regions and genes, providing theoretical and methodological support for the research of related diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen , Humanos
7.
Exp Dermatol ; 33(1): e14812, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37086043

RESUMEN

Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.


Asunto(s)
Piroptosis , Rosácea , Humanos , Piroptosis/genética , Rosácea/genética , Piel , Proteínas Adaptadoras Transductoras de Señales , Perfilación de la Expresión Génica
8.
Environ Res ; 241: 117657, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980988

RESUMEN

In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.


Asunto(s)
Manganeso , Contaminantes Químicos del Agua , Manganeso/análisis , Azul de Metileno/análisis , Contaminantes Químicos del Agua/análisis , Adsorción
9.
J Am Chem Soc ; 145(16): 8917-8926, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040584

RESUMEN

Chemical tools capable of classifying multidrug-resistant bacteria (superbugs) can facilitate early-stage disease diagnosis and help guide precision therapy. Here, we report a sensor array that permits the facile phenotyping of methicillin-resistant Staphylococcus aureus (MRSA), a clinically common superbug. The array consists of a panel of eight separate ratiometric fluorescent probes that provide characteristic vibration-induced emission (VIE) profiles. These probes bear a pair of quaternary ammonium salts in different substitution positions around a known VIEgen core. The differences in the substituents result in varying interactions with the negatively charged cell walls of bacteria. This, in turn, dictates the molecular conformation of the probes and affects their blue-to-red fluorescence intensity ratios (ratiometric changes). Within the sensor array, the differences in the ratiometric changes for the probes result in "fingerprints" for MRSA of different genotypes. This allows them to be identified using principal component analysis (PCA) without the need for cell lysis and nucleic acid isolation. The results obtained with the present sensor array agree well with those obtained using polymerase chain reaction (PCR) analysis.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Genotipo , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Antibacterianos
10.
Breast Cancer Res ; 25(1): 34, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998014

RESUMEN

BACKGROUND: HER2-low could be found in some patients with triple-negative breast cancer (TNBC). However, its potential impacts on clinical features and tumor biological characteristics in TNBC remain unclear. METHODS: We enrolled 251 consecutive TNBC patients retrospectively, including 157 HER2-low (HER2low) and 94 HER2-negtive (HER2neg) patients to investigate the clinical and prognostic features. Then, we performed single-cell RNA sequencing (scRNA-seq) with another seven TNBC samples (HER2neg vs. HER2low, 4 vs. 3) prospectively to further explore the differences of tumor biological properties between the two TNBC phenotypes. The underlying molecular distinctions were also explored and then verified in the additional TNBC samples. RESULTS: Compared with HER2neg TNBC, HER2low TNBC patients exhibited malignant clinical features with larger tumor size (P = 0.04), more lymph nodes involvement (P = 0.02), higher histological grade of lesions (P < 0.001), higher Ki67 status (P < 0.01), and a worse prognosis (P < 0.001; HR [CI 95%] = 3.44 [2.10-5.62]). Cox proportional hazards analysis showed that neoadjuvant systemic therapy, lymph nodes involvement and Ki67 levels were prognostic factors in HER2low TNBC but not in HER2neg TNBC patients. ScRNA-seq revealed that HER2low TNBC which showed more metabolically active and aggressive hallmarks, while HER2neg TNBC exhibited signatures more involved in immune activities with higher expressions of immunoglobulin-related genes (IGHG1, IGHG4, IGKC, IGLC2); this was further confirmed by immunofluorescence in clinical TNBC samples. Furthermore, HER2low and HER2neg TNBC exhibited distinct tumor evolutionary characteristics. Moreover, HER2neg TNBC revealed a potentially more active immune microenvironment than HER2low TNBC, as evidenced by positively active regulation of macrophage polarization, abundant CD8+ effector T cells, enriched diversity of T-cell receptors and higher levels of immunotherapy-targeted markers, which contributed to achieve immunotherapeutic response. CONCLUSIONS: This study suggests that HER2low TNBC patients harbor more malignant clinical behavior and aggressive tumor biological properties than the HER2neg phenotype. The heterogeneity of HER2 may be a non-negligible factor in the clinical management of TNBC patients. Our data provide new insights into the development of a more refined classification and tailored therapeutic strategies for TNBC patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antígeno Ki-67 , Estudios Retrospectivos , Pronóstico , Microambiente Tumoral/genética
11.
Anal Chem ; 95(46): 17046-17053, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37937716

RESUMEN

The transcription of the mitochondrial genome is pivotal for maintenance of mitochondrial functions, and the deregulated mitochondrial transcriptome contributes to various pathological changes. Despite substantial progress having been achieved in uncovering the transcriptional complexity of the nuclear transcriptome, many unknowns and controversies remain for the mitochondrial transcriptome, partially owing to the lack of a highly efficient mitochondrial RNA (mtRNA) sequencing and analysis approach. Here, we first comprehensively evaluated the influence of essential experimental protocols, including strand-specific library construction, two RNA enrichment strategies, and optimal rRNA depletion, on accurately profiling mitochondrial transcriptome in whole-transcriptome sequencing (WTS) data. Based on these insights, we developed a highly efficient approach specifically suitable for targeted sequencing of whole mitochondrial transcriptome, termed capture-based mtRNA seq (CAP), in which strand-specific library construction and optimal rRNA depletion were applied. Compared with WTS, CAP has a great decrease of required data volume without affecting the sensitivity and accuracy of detection. In addition, CAP also characterized the unannotated mt-tRNA transcripts whose expression levels are below the detection limits of conventional WTS. As a proof-of-concept characterization of mtRNAs, the transcription initiation sites and mtRNA cleavage ratio were accurately identified in CAP data. Moreover, CAP had very reliable performance in plasma and single-cell samples, highlighting its wide application. Altogether, the present study has established a highly efficient pipeline for targeted sequencing of mtRNAs, which may pave the way toward functional annotation of mtRNAs and mtRNA-based diagnostic and therapeutic strategies in various diseases.


Asunto(s)
ARN , Transcriptoma , ARN Mitocondrial/genética , ARN/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Small ; 19(4): e2205471, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399641

RESUMEN

The emergence and evolution of antimicrobial resistance (AMR) pose a significant challenge to the current arsenal to fight infection. Antibiotic adjuvants represent an appealing tactic for tackling the AMR of pathogens, however, their practical applications are greatly constrained by the harsh infectious microenvironment. Herein, it is found that silver nanoclusters (Ag NCs) can possess tunable enzymatic activities to modulate infectious microenvironments. Based on this finding, an enzymatic nanoadjuvant (EnzNA) self-assembled from Ag NCs, which is inert under neutral physiological conditions but can readily disassemble into isolated Ag NCs exhibiting biofilm destructive oxidase-mimetic activity in the acidic biofilm microenvironment, is developed. Once internalized into the neutral cytoplasm of bacteria, Ag NCs switch to reveal the thiol oxidase-mimetic activity to suppress ribosomal biogenesis for AMR reversal and evolution inhibition of pathogens. Consequently, EnzNAs revitalize various existing antibiotics against methicillin-resistant Staphylococcus aureus, and potentiate the antibiotic efficacy against biofilm-mediated skin infection and lethal lung infection in mice. These findings highlight the capability of enzyme-mimetic nanomaterials to modulate the infectious microenvironment and potentiate antibiotics, providing a paradigm shift for anti-infection therapy.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana
13.
Small ; 19(25): e2300736, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029565

RESUMEN

Cell cycle checkpoint activation promotes DNA damage repair, which is highly associated with the chemoresistance of various cancers including acute myeloid leukemia (AML). Selective cell cycle checkpoint inhibitors are strongly demanded to overcome chemoresistance, but remain unexplored. A selective nano cell cycle checkpoint inhibitor (NCCI: citric acid capped ultra-small iron oxide nanoparticles) that can catalytically inhibit the cell cycle checkpoint of AML to boost the chemotherapeutic efficacy of genotoxic agents is now reported. NCCI can selectively accumulate in AML cells and convert H2 O2 to • OH to cleave heat shock protein 90, leading to the degradation of ataxia telangiectasia and Rad3-related proteinand checkpoint kinase 1, and the subsequent dysfunction of the G2/M checkpoint. Consequently, NCCI revitalizes the anti-AML efficacy of cytarabine that is previously ineffective both in vitro and in vivo. This study offers new insights into designing selective cell cycle checkpoint inhibitors for biomedical applications.


Asunto(s)
Antineoplásicos , Puntos de Control del Ciclo Celular , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas Magnéticas de Óxido de Hierro , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ácido Cítrico/química , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de Hierro/química , Línea Celular Tumoral
14.
Planta ; 257(2): 35, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36624317

RESUMEN

MAIN CONCLUSION: This review proposed that phytoremediation could be applied for the decontamination of MPs/NPs. Micro- and nano-plastics (MPs < 5 mm; NPs < 100 nm) are emerging contaminants. Much of the recent concerns have focused on the investigation of their pollution and their potential eco-toxicity. Yet little review was available on the decontamination of MPs/NPs. Recently, the uptake of MPs/NPs by plants has been confirmed. Here, in view of the current knowledge, this review introduces MPs/NPs pollution and highlights the updated information about the interaction between MPs/NPs and plants. This review proposed that phytoremediation could be a potential possible way for the in situ remediation of MPs/NPs-contaminated environment. The possible mechanisms, influencing factors, and existing problems are summarized, and further research needs are proposed. This review herein provides new insights into the development of plant-based process for emerging pollutants decontamination, as well as the alleviation of MPs/NPs-induced toxicity to the ecosystem.


Asunto(s)
Contaminantes Ambientales , Microplásticos , Biodegradación Ambiental , Ecosistema , Transporte Biológico
15.
Cell Mol Neurobiol ; 43(7): 3161-3178, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37338781

RESUMEN

Glaucoma is a group of diseases characterized by the degeneration of retinal ganglion cells (RGCs) and progressive, irreversible vision loss. High intraocular pressure (IOP) heightens the likelihood of glaucoma and correlates with RGC loss. While the current glaucoma therapy prioritizes lower the IOP; however, RGC, and visual loss may persist even when the IOP is well-controlled. As such, discovering and creating IOP-independent neuroprotective strategies for safeguard RGCs is crucial for glaucoma management. Investigating and clarifying the mechanism behind RGC death to counteract its effects is a promising direction for glaucoma control. Empirical studies of glaucoma reveal the role of multiple regulated cell death (RCD) pathways in RGC death. This review delineates the RCD of RGCs following IOP elevation and optic nerve damage and discusses the substantial benefits of mitigating RCD in RGCs in preserving visual function.


Asunto(s)
Glaucoma , Muerte Celular Regulada , Animales , Células Ganglionares de la Retina/metabolismo , Presión Intraocular , Glaucoma/terapia , Glaucoma/metabolismo , Neuroprotección , Modelos Animales de Enfermedad
16.
Eur Radiol ; 33(4): 2301-2311, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36334102

RESUMEN

OBJECTIVES: Hypertrophic cardiomyopathy (HCM) often requires repeated enhanced cardiac magnetic resonance (CMR) imaging to detect fibrosis. We aimed to develop a practical model based on cine imaging to help identify patients with high risk of fibrosis and screen out patients without fibrosis to avoid unnecessary injection of contrast. METHODS: A total of 273 patients with HCM were divided into training and test sets at a ratio of 7:3. Logistic regression analysis was used to find predictive image features to construct CMR model. Radiomic features were derived from the maximal wall thickness (MWT) slice and entire left ventricular (LV) myocardium. Extreme gradient boosting was used to build radiomic models. Integrated models were established by fusing image features and radiomic models. The model performance was validated in the test set and assessed by ROC and calibration curve and decision curve analysis (DCA). RESULTS: We established five prediction models, including CMR, R1 (based on the MWT slice), R2 (based on the entire LV myocardium), and two integrated models (ICMR+R1 and ICMR+R2). In the test set, ICMR+R2 model had an excellent AUC value (0.898), diagnostic accuracy (89.02%), sensitivity (92.54%), and F1 score (93.23%) in identifying patients with positive late gadolinium enhancement. The calibration plots and DCA indicated that ICMR+R2 model was well-calibrated and presented a better net benefit than other models. CONCLUSIONS: A predictive model that fused image and radiomic features from the entire LV myocardium had good diagnostic performance, robustness, and clinical utility. KEY POINTS: • Hypertrophic cardiomyopathy is prone to fibrosis, requiring patients to undergo repeated enhanced cardiac magnetic resonance imaging to detect fibrosis over their lifetime follow-up. • A predictive model based on the entire left ventricular myocardium outperformed a model based on a slice of the maximal wall thickness. • A predictive model that fused image and radiomic features from the entire left ventricular myocardium had excellent diagnostic performance, robustness, and clinical utility.


Asunto(s)
Cardiomiopatía Hipertrófica , Medios de Contraste , Humanos , Medios de Contraste/farmacología , Imagen por Resonancia Cinemagnética/métodos , Gadolinio , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Imagen por Resonancia Magnética , Miocardio/patología , Fibrosis , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas
17.
J Org Chem ; 88(18): 12935-12948, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673796

RESUMEN

An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.

18.
Org Biomol Chem ; 21(22): 4661-4666, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212349

RESUMEN

Peroxynitrite (ONOO-) is an important oxygen/nitrogen reactive species implicated in a number of physiological and pathological processes. However, due to the complexity of the cellular micro-environment, the sensitive and accurate detection of ONOO- remains a challenging task. Here, we developed a long-wavelength fluorescent probe based on the conjugation between a TCF scaffold and phenylboronate; the resulting conjugate is capable of supramolecular host-guest assembly with human serum albumin (HSA) for the fluorogenic sensing of ONOO-. The probe exhibited an enhanced fluorescence over a low concentration range of ONOO- (0-9.6 µM), whist the fluorescence was quenched when the concentration of ONOO- exceeded 9.6 µM. In addition, when human serum albumin (HSA) was added, the initial fluorescence of the probe was significantly enhanced, which enabled the more sensitive detection of low-concentrations of ONOO- in aqueous buffer solution and in cells. The molecular structure of the supramolecular host-guest ensemble was determined using small-angle X-ray scattering.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/química , Colorantes Fluorescentes/química , Especies Reactivas de Oxígeno , Estructura Molecular , Límite de Detección
19.
Environ Sci Technol ; 57(32): 11852-11862, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526712

RESUMEN

Energy transition is an important way to control air pollution, but it may conflict with the economic goal of alleviating regional inequality due to its inherently different cost burdens. As one of the effective measures of energy transition, this paper takes small coal-fired boiler (SCB) upgrading as an example to explore the regional mismatch between upgrading costs and health benefits. Here, we construct a boiler-level inventory of SCB upgrades for the North China Plain (NCP) during 2013-2017 and propose an integrated modeling framework to quantify the spatial contribution of economic costs and health benefits associated with SCB upgrading. We find that although the total health benefits could offset the total costs for the entire region, the developed municipalities (Beijing and Tianjin) are likely to gain more health benefits from less-developed neighboring provinces at lower costs. These developed municipalities contribute only 14% to the total health benefits but gain 21% of the benefits within their territories, 56% of which come from neighboring provinces. Their benefits are approximately 5.6 times their costs, which is much higher than the 1.5 benefit-cost ratio in neighboring provinces. Our findings may be useful in shaping more equitable and sound environmental policies in China or other regions of the world with serious coal-related air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Beijing , China , Fenómenos Físicos , Carbón Mineral , Contaminantes Atmosféricos/análisis
20.
Cereb Cortex ; 32(10): 2129-2139, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34613359

RESUMEN

Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital/diagnóstico por imagen , Espectroscopía de Protones por Resonancia Magnética , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA