Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33171100

RESUMEN

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Asunto(s)
COVID-19 , Genómica , RNA-Seq , SARS-CoV-2 , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad
2.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330013

RESUMEN

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Asunto(s)
Epóxido Hidrolasas , Neoplasias , Ratones , Humanos , Animales , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Neoplasias/terapia , Inmunoterapia , Microambiente Tumoral
3.
PLoS Biol ; 20(12): e3001944, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574409

RESUMEN

The notion of epigenetic "marks" used by molecular biologists is conceptually disconnected from the idea of Waddington's epigenetic "landscape" that is used by systems biologists and biophysicists. Recent advances suggest that these 2 distinct schools of thought could be united.


Asunto(s)
Epigénesis Genética , Epigenómica , Instituciones Académicas
4.
J Biol Chem ; 299(8): 104951, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356716

RESUMEN

The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.


Asunto(s)
Proteínas Portadoras , Proteínas Nucleares , ARN Polimerasa I , Saccharomyces cerevisiae , Animales , Humanos , Ratones , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Gastroenterology ; 165(2): 374-390, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196797

RESUMEN

BACKGROUND & AIMS: Elements of field cancerization, including atrophic gastritis, metaplasia, and dysplasia, promote gastric cancer development in association with chronic inflammation. However, it remains unclear how stroma changes during carcinogenesis and how the stroma contributes to progression of gastric preneoplasia. Here we investigated heterogeneity of fibroblasts, one of the most important elements in the stroma, and their roles in neoplastic transformation of metaplasia. METHODS: We used single-cell transcriptomics to evaluate the cellular heterogeneity of mucosal cells from patients with gastric cancer. Tissue sections from the same cohort and tissue microarrays were used to identify the geographical distribution of distinct fibroblast subsets. We further evaluated the role of fibroblasts from pathologic mucosa in dysplastic progression of metaplastic cells using patient-derived metaplastic gastroids and fibroblasts. RESULTS: We identified 4 subsets of fibroblasts within stromal cells defined by the differential expression of PDGFRA, FBLN2, ACTA2, or PDGFRB. Each subset was distributed distinctively throughout stomach tissues with different proportions at each pathologic stage. The PDGFRα+ subset expanded in metaplasia and cancer compared with normal, maintaining a close proximity with the epithelial compartment. Co-culture of metaplasia- or cancer-derived fibroblasts with gastroids showing the characteristics of spasmolytic polypeptide-expressing metaplasia-induced disordered growth, loss of metaplastic markers, and increases in markers of dysplasia. Culture of metaplastic gastroids with conditioned media from metaplasia- or cancer-derived fibroblasts also promoted dysplastic transition. CONCLUSIONS: These findings indicate that fibroblast associations with metaplastic epithelial cells can facilitate direct transition of metaplastic spasmolytic polypeptide-expressing metaplasia cell lineages into dysplastic lineages.


Asunto(s)
Mucosa Gástrica , Neoplasias Gástricas , Humanos , Mucosa Gástrica/patología , Neoplasias Gástricas/patología , Hiperplasia , Metaplasia/patología , Fibroblastos/metabolismo
6.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759942

RESUMEN

MOTIVATION: Knowledge graphs (KGs) are being adopted in industry, commerce and academia. Biomedical KG presents a challenge due to the complexity, size and heterogeneity of the underlying information. RESULTS: In this work, we present the Scalable Precision Medicine Open Knowledge Engine (SPOKE), a biomedical KG connecting millions of concepts via semantically meaningful relationships. SPOKE contains 27 million nodes of 21 different types and 53 million edges of 55 types downloaded from 41 databases. The graph is built on the framework of 11 ontologies that maintain its structure, enable mappings and facilitate navigation. SPOKE is built weekly by python scripts which download each resource, check for integrity and completeness, and then create a 'parent table' of nodes and edges. Graph queries are translated by a REST API and users can submit searches directly via an API or a graphical user interface. Conclusions/Significance: SPOKE enables the integration of seemingly disparate information to support precision medicine efforts. AVAILABILITY AND IMPLEMENTATION: The SPOKE neighborhood explorer is available at https://spoke.rbvi.ucsf.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Medicina de Precisión , Bases de Datos Factuales
7.
Histochem Cell Biol ; 162(1-2): 149-159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811432

RESUMEN

The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.


Asunto(s)
Núcleo Celular , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/química , Cromosomas/metabolismo , Orgánulos/metabolismo , Orgánulos/química
8.
FASEB J ; 36(11): e22588, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36287614

RESUMEN

This conference brought together leaders in the investigation of various bodies that populate the nucleus, a field that complements research on chromosome biology. These nuclear bodies had been receiving increasing attention as hubs of genome activity and the new findings reported at the conference strongly confirmed and significantly expanded this principle.


Asunto(s)
Genoma , Cuerpos Nucleares , Nueva Escocia , Cromosomas/genética , Genómica
9.
J Theor Biol ; 575: 111645, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37863423

RESUMEN

Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.


Asunto(s)
Crecimiento Demográfico , Ciclo Celular , Proliferación Celular , Células Clonales , Fenotipo , Procesos Estocásticos
10.
PLoS Comput Biol ; 18(7): e1010319, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877695

RESUMEN

Intratumor cellular heterogeneity and non-genetic cell plasticity in tumors pose a recently recognized challenge to cancer treatment. Because of the dispersion of initial cell states within a clonal tumor cell population, a perturbation imparted by a cytocidal drug only kills a fraction of cells. Due to dynamic instability of cellular states the cells not killed are pushed by the treatment into a variety of functional states, including a "stem-like state" that confers resistance to treatment and regenerative capacity. This immanent stress-induced stemness competes against cell death in response to the same perturbation and may explain the near-inevitable recurrence after any treatment. This double-edged-sword mechanism of treatment complements the selection of preexisting resistant cells in explaining post-treatment progression. Unlike selection, the induction of a resistant state has not been systematically analyzed as an immanent cause of relapse. Here, we present a generic elementary model and analytical examination of this intrinsic limitation to therapy. We show how the relative proclivity towards cell death versus transition into a stem-like state, as a function of drug dose, establishes either a window of opportunity for containing tumors or the inevitability of progression following therapy. The model considers measurable cell behaviors independent of specific molecular pathways and provides a new theoretical framework for optimizing therapy dosing and scheduling as cancer treatment paradigms move from "maximal tolerated dose," which may promote therapy induced-stemness, to repeated "minimally effective doses" (as in adaptive therapies), which contain the tumor and avoid therapy-induced progression.


Asunto(s)
Neoplasias , Muerte Celular , Plasticidad de la Célula , Humanos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(35): 21576-21587, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801214

RESUMEN

Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.


Asunto(s)
Citocinas/metabolismo , Eicosanoides/metabolismo , Neoplasias Hepáticas/metabolismo , Aflatoxina B1/efectos adversos , Animales , Apoptosis , Carcinogénesis/metabolismo , Carcinógenos/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Citocinas/inmunología , Progresión de la Enfermedad , Eicosanoides/inmunología , Epóxido Hidrolasas/metabolismo , Células Hep G2 , Humanos , Inflamación/metabolismo , Neoplasias Hepáticas/fisiopatología , Macrófagos/metabolismo , Ratones , Procesos Neoplásicos
12.
Proc Natl Acad Sci U S A ; 117(38): 23270-23279, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32661177

RESUMEN

Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.


Asunto(s)
Conducta , Encéfalo/fisiología , Redes Reguladoras de Genes , Animales , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos
13.
Cancer Metastasis Rev ; 40(3): 791-801, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34665387

RESUMEN

Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell "debris" which can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically linked to treatment by stimulating resolution of tumor-promoting debris.


Asunto(s)
Antineoplásicos , MicroARNs , Neoplasias , Línea Celular Tumoral , Citocinas , Eicosanoides , Humanos , Neoplasias/terapia , Microambiente Tumoral
14.
Am J Physiol Heart Circ Physiol ; 323(1): H235-H247, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35657612

RESUMEN

Cardiac fibrosis is thought to be the hallmark of pathological hypertrophic remodeling, of which the myofibroblast transdifferentiation is the key cell biological event. However, there is still no specific and effective therapeutic agent approved for cardiac fibrosis. To investigate the effects of belumosudil, the first ρ-associated kinase-2 (ROCK2)-specific inhibitor, on cardiac hypertrophy, fibrosis, and dysfunction induced by pressure overload, the transverse aortic constriction (TAC) or sham operation was carried out on wild-type C57BL/6 mice (male, 6-8 wk old) under pentobarbital anesthesia. After that, mice were randomly divided into three groups: sham operation + vehicle, TAC + vehicle, TAC + 50 mg·kg-1·day-1 belumosudil. We found that belumosudil effectively ameliorated cardiac hypertrophy, fibrosis, and dysfunction in TAC mice. To elucidate the underlying mechanism, we inhibited the expression of ROCK2 in vitro by either belumosudil or siRNA. We showed that the inhibition of ROCK2 by either belumosudil or knockdown suppressed cardiac fibroblasts activation and proliferation significantly induced by transforming growth factor-ß1 (TGF-ß1). Furthermore, our study confirmed ROCK2 mediates cardiac fibrosis by interacting with TGF-ß1/mothers against decapentaplegic homolog 2 (Smad2) pathway. Taken together, we demonstrated that belumosudil ameliorates cardiac hypertrophy and fibrosis induced by TAC via inhibiting cardiac fibroblasts activation. In conclusion, belumosudil may be a promising therapeutic drug for cardiac hypertrophy and fibrosis induced by myocardial pressure overload.NEW & NOTEWORTHY Although ρ-associated kinase-2 (ROCK2) is the main isoform of ρ-associated kinases (ROCKs) in the heart and more important in cardiac hypertrophy and fibrosis than ρ-associated kinase-1 (ROCK1), there has not been any pharmacological approach to inhibit ROCK2 selectively. Our study demonstrates for the first time that belumosudil, the first ROCK2-specific inhibitor, effectively ameliorates cardiac hypertrophy, fibrosis, and dysfunction induced by TAC via inhibiting cardiac fibroblasts activation.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Quinasas Asociadas a rho , Acetamidas , Animales , Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Quinasas Asociadas a rho/metabolismo
15.
Phys Biol ; 19(3)2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35078159

RESUMEN

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?


Asunto(s)
Epigénesis Genética , Neoplasias , Epigenómica , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral
16.
Microb Pathog ; 162: 105297, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34883227

RESUMEN

Duodenal microbiota may have impact in Functional Dyspepsia. The aim of this study was to explore the difference of microbiota on duodenal mucosa between patients with Functional Dyspepsia and normal subjects. The duodenal mucosa of the subjects were collected under upper gastrointestinal endoscope and the contents of the descending duodenal intestine were extracted with cell brushes in 20 patients with Functional Dyspepsia and 5 healthy subjects. The microbiome on duodenal was studied by 16SrDNA gene sequencing. The differences of duodenal flora were analyzed and compared by LEfSe, FAPROTAX, SPSS and other software. There were significant differences in ACE index, shannon index and observedspecies index between patients with functional dyspepsia and healthy people (P < 0.05). PCoA analysis of the structure of bacteria between two groups found that the duodenal microbiome showed a separate trend. In further study, Amova analysis showed a significant difference (P < 0.05). We found that the there are obvious differences in the composition of duodenal microbiome in functional dyspepsia and healthy people. At the genus level, there were significant differences in Alloprevotella, Peptostreptococcus,Sutterella, Corynebacteriurn,Catonella, Faecalibacterium,Staphylococcus,Eubacteriumnodatumgro-up, Lachnoclostridiurn and Lautropia between the two groups (P < 0.05). The prediction results of Microflora function from FAPROTAX showed that the urea decomposing (ureolysis) and fumaric acid respiratory (fumaraterespiration) function of duodenal bacteria in patients with functional dyspepsia were significantly different from those in healthy people (P < 0.05). In conclusion, there is a significant difference in mucosal microflora of duodenum between patients with functional dyspepsia and healthy groups. It includes greater microflora diversity, different microflora structure, different microflora composition, specific taxa and specific microbiome function. The disorder of duodenal microecology may be the formation mechanism of functional dyspepsia.


Asunto(s)
Dispepsia , Gastritis , Microbiota , Duodeno , Humanos , Mucosa Intestinal
17.
PLoS Biol ; 17(8): e3000399, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381560

RESUMEN

Most models of cancer cell population expansion assume exponential growth kinetics at low cell densities, with deviations to account for observed slowing of growth rate only at higher densities due to limited resources such as space and nutrients. However, recent preclinical and clinical observations of tumor initiation or recurrence indicate the presence of tumor growth kinetics in which growth rates scale positively with cell numbers. These observations are analogous to the cooperative behavior of species in an ecosystem described by the ecological principle of the Allee effect. In preclinical and clinical models, however, tumor growth data are limited by the lower limit of detection (i.e., a measurable lesion) and confounding variables, such as tumor microenvironment, and immune responses may cause and mask deviations from exponential growth models. In this work, we present alternative growth models to investigate the presence of an Allee effect in cancer cells seeded at low cell densities in a controlled in vitro setting. We propose a stochastic modeling framework to disentangle expected deviations due to small population size stochastic effects from cooperative growth and use the moment approach for stochastic parameter estimation to calibrate the observed growth trajectories. We validate the framework on simulated data and apply this approach to longitudinal cell proliferation data of BT-474 luminal B breast cancer cells. We find that cell population growth kinetics are best described by a model structure that considers the Allee effect, in that the birth rate of tumor cells increases with cell number in the regime of small population size. This indicates a potentially critical role of cooperative behavior among tumor cells at low cell densities with relevance to early stage growth patterns of emerging and relapsed tumors.


Asunto(s)
Recuento de Células/métodos , Proliferación Celular/fisiología , Neoplasias/metabolismo , Línea Celular Tumoral , Ecosistema , Humanos , Cinética , Modelos Biológicos , Modelos Teóricos
18.
Proc Natl Acad Sci U S A ; 116(13): 6292-6297, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30862734

RESUMEN

Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.


Asunto(s)
Antineoplásicos/farmacología , Aspirina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Animales , Aspirina/administración & dosificación , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Lipoxinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metabolómica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Fagocitosis/efectos de los fármacos , Inactivadores Plasminogénicos/metabolismo , Prostaglandinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(5): 1698-1703, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30647111

RESUMEN

Although chemotherapy is a conventional cancer treatment, it may induce a protumorigenic microenvironment by triggering the release of proinflammatory mediators. In this study, we demonstrate that ovarian tumor cell debris generated by first-line platinum- and taxane-based chemotherapy accelerates tumor progression by stimulating a macrophage-derived "surge" of proinflammatory cytokines and bioactive lipids. Thus, targeting a single inflammatory mediator or pathway is unlikely to prevent therapy-induced tumor progression. Here, we show that combined pharmacological abrogation of the cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) pathways prevented the debris-induced surge of both cytokines and lipid mediators by macrophages. In animal models, the dual COX-2/sEH inhibitor PTUPB delayed the onset of debris-stimulated ovarian tumor growth and ascites leading to sustained survival over 120 days postinjection. Therefore, dual inhibition of COX-2/sEH may be an approach to suppress debris-stimulated ovarian tumor growth by preventing the therapy-induced surge of cytokines and lipid mediators.


Asunto(s)
Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Animales , Hidrocarburos Aromáticos con Puentes/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lípidos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias Ováricas/metabolismo , Platino (Metal)/farmacología , Transducción de Señal/efectos de los fármacos , Taxoides/farmacología
20.
J Prosthet Dent ; 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35963711

RESUMEN

STATEMENT OF PROBLEM: Whether early loaded implants have similar clinical outcomes to delayed loaded implants is unclear. PURPOSE: The purpose of this systematic review and meta-analysis was to compare the outcomes of early and delayed loading dental implants. MATERIAL AND METHODS: Comprehensive searches of the MEDLINE, EMBASE, and Ovid databases were enriched by hand searches. Only human randomized controlled trials (RCTs) that compared the clinical efficacy of early and delayed loading were included. The survival rates and marginal bone level (MBL) changes were pooled and analyzed by risk ratios (RRs) and weighted mean differences (WMDs), respectively. The subgroup analyses, which were based on the Mantel-Haenszel and inverse-variance methods, included the types of prosthesis, implant time, occlusion, number of missing teeth, operation methods, dental position, healing methods, and type of first restoration. A funnel plot was used for heterogeneity analysis. RESULTS: Eighteen trials were included from the initial 601 articles. The dental implant survival rates for the early and delayed loading were similar (P>.05). Regarding the marginal bone level changes, the 2 loading protocols also reached a comparable clinical outcome (P>.05). CONCLUSIONS: Early implant loading should achieve the same clinical efficacy as the delayed loading method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA