RESUMEN
Metasurface absorbers (MA) typically exhibit a single type of absorption function due to their regular structures. In this study, we propose an irregular MA structure with octagonal meta-atoms. The presence of eight vertices in each meta-atom allows for tunable coordinates and offers a multitude of degrees of freedom in terms of geometry. As a result, the proposed MA exhibits diverse functionalities, including perfect absorption, multi-peaks absorption, and high absorption with a filtering window. To predict the geometric parameters of the MA structure based on a given target absorption spectrum, as well as the inverse design of the structure using the absorption spectrum as input, we employ a deep neural network combined with the particle swarm optimization algorithm. Remarkably, the mean-square error for spectrum prediction and inverse design of the MA structure is found to be as low as 0.0008 and 0.0031, respectively. This study opens up new possibilities for designing irregular electromagnetic structures and holds great potential for applications in multifunctional metasurfaces and metamaterials.
RESUMEN
A conventional metalens is designed with a fixed working environment, and its focal length depends on the background refractive index. In this study, we propose a dual-environment metalens that can maintain the same focal length in both media of air and water. The metalens consists of 16 types of meta-atoms with different geometries, which can cover the 0-2π phase range in both air and water. We perform finite-difference time-domain simulations to investigate the metalens and demonstrate that its focal length remains unchanged, regardless of whether the background medium is air or water. Furthermore, we investigated the optical forces within the focal field of the metalens in both air and water, indicating its potential trapping capability in these media. Our method provides a new insight into dual-environment metasurfaces and advances the methodology of electromagnetic structures in extensive applications.
RESUMEN
The geometric phase in metasurfaces follows a symmetry restriction of chirality, which dictates that the phases of two orthogonal circularly polarized waves are identical but have opposite signs. In this study, we propose a general mechanism to disrupt this symmetric restriction on the chirality of orthogonal circular polarizations by introducing mirror-symmetry-breaking meta-atoms. This mechanism introduces a new degree of freedom in spin-decoupled phase modulation without necessitating the rotation of the meta-atom. To demonstrate the feasibility of this concept, we design what we believe is a novel meta-atom with a QR-code structure and successfully showcase circular-polarization multiplexing metasurface holography. Our investigation offers what we believe to be a novel understanding of the chirality in geometric phase within the realm of nanophotonics. Moreover, it paves the way for the development of what we believe will be novel design methodologies for electromagnetic structures, enabling applications in arbitrary wavefront engineering.
RESUMEN
Biofilm formation and virulence factor secretion in opportunistic pathogen Pseudomonas aeruginosa are essential for establishment of chronic and recurrent infection, which are regulated by quorum sensing (QS) system. In this study, a set of cajaninstilbene acid analogues were designed and synthesized, and their abilities to inhibit QS and biofilm formation were investigated. Among all the compounds, compounds 3g, 3m and 3o showed potent anti-biofilm activity, especially 3o exhibited promising biofilm inhibitory activity with biofilm inhibition ratio of 49.50 ± 1.35% at 50 µM. Three lacZ reporter strains were constructed to identify the effects of compound 3o on different QS systems. Compound 3o showed the suppression on the expression of lasB-lacZ and pqsA-lacZ as well as on the production of their corresponding virulence factors. Therefore, compound 3o is expected to be generated as a lead compound with inhibition of biofilm formation and QS of Pseudomonas aeruginosa.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Salicilatos/farmacología , Estilbenos/farmacología , Proteínas Bacterianas/genética , Percepción de Quorum/efectos de los fármacos , Factores de VirulenciaRESUMEN
Arenobufagin is a naturally occurring bufadienolide showing promising antitumor activity accompanied however with apparent cardiac toxicity. Following the recent discovery that oxidative damage possibly be an important cause of the cardiac toxicity of cardenolides, a strategy fusing the antitumor agent arenobufagin with a benzoisoselenazol fragment, a reactive oxygen species (ROS) scavenger, has been developed. Six novel hybrids were synthesized and their ROS scavenging activities as well as their in vitro cytotoxicity against the human hepatocellular carcinoma cell line HepG2, an adriamycin-resistant subline HepG2/ADM, and the human myocardial cell line AC16 were evaluated. The results indicate that the hybrids exhibit various degrees of in vitro ROS scavenging activities, and weaker cytotoxicity than that of arenobufagin against the myocardial cell line AC16. These findings suggest the feasibility of a strategy in which the cardiotoxicity of the potential antitumor agent arenobufagin is reduced.
Asunto(s)
Antineoplásicos/farmacología , Bufanólidos/farmacología , Cardiotoxicidad/prevención & control , Depuradores de Radicales Libres/farmacología , Compuestos de Organoselenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/toxicidad , Bufanólidos/síntesis química , Bufanólidos/química , Bufanólidos/toxicidad , Línea Celular Tumoral , Diseño de Fármacos , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/toxicidad , Humanos , Estructura Molecular , Miocitos Cardíacos/patología , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/toxicidad , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The quorum sensing (QS) system inhibitors of Pseudomonas aeruginosa are thought to attenuate bacterial pathogenicity and drug resistance by inhibiting biofilm formation and the production of virulence factors. In this study, a synthetic approach to the natural products cajaninstilbene acid (1) and amorfrutins A (2) and B (3) has been developed and was characterized by the Heck reaction, which was used to obtain the stilbene core and a Pinick oxidation to give the O-hydroxybenzoic acid. The biological activities of these compounds against the P. aeruginosa quorum sensing systems were evaluated. Amorfrutin B (3) showed promising antibiofilm activity against P. aeruginosa PAO1 with a biofilm inhibition ratio of 50.3 ± 2.7. Three lacZ reporter strains were constructed to identify the effects of compound 3 on different QS systems. Suppression efficacy of compound 3 on the expression of lasB-lacZ and pqsA-lacZ as well as on the production of their corresponding virulence factors elastase and pyocyanin was observed.
Asunto(s)
Pseudomonas aeruginosa/efectos de los fármacos , Salicilatos/farmacología , Estilbenos/farmacología , Expresión Génica/efectos de los fármacos , Genes Bacterianos/efectos de los fármacos , Estructura Molecular , Pseudomonas aeruginosa/genética , Percepción de Quorum/efectos de los fármacos , Salicilatos/síntesis química , Salicilatos/química , Estilbenos/síntesis química , Estilbenos/química , Factores de Virulencia/biosíntesis , Factores de Virulencia/genéticaRESUMEN
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method.
Asunto(s)
Nanopartículas de Magnetita , Termómetros , Relación Señal-RuidoRESUMEN
As an important fishery resource and endangered species, studying the habitat of Coilia nasus (C. nasus) is highly significant. This study used fishery survey data from southern Zhejiang coastal waters from 2016 to 2020, employing a maximum entropy model (MaxEnt) to map the habitat distribution of C. nasus. Model performance was evaluated using two metrics: the area under the curve (AUC) of the receiver operating characteristic curve for the training and test sets and true skill statistics (TSS). This study aimed to predict the habitat distribution of C. nasus and explore how environmental variables influence habitat suitability. The results indicated that the models for each season had strong predictive performance, with AUC values above 0.8 and TSS values exceeding 0.6, indicating that they could accurately predict the presence of C. nasus. In the study area, C. nasus was primarily found in brackish or marine waters near bays and coastal islands. Among all environmental factors, salinity (S) and bottom temperature (BOT) had the highest correlations with habitat distribution, although these correlations varied across seasons. The findings of this study provide empirical evidence and a reference for the conservation and management of C. nasus and for the designation of its protected areas.
RESUMEN
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Enfermedades del Sistema Nervioso , Humanos , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Dopamina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismoRESUMEN
Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (≈3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.
Asunto(s)
Escherichia coli , Membrana Dobles de Lípidos , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Propiedades de SuperficieRESUMEN
Symbolic regression (SR) is an important problem with many applications, such as automatic programming tasks and data mining. Genetic programming (GP) is a commonly used technique for SR. In the past decade, a branch of GP that utilizes the program behavior to guide the search, called semantic GP (SGP), has achieved great success in solving SR problems. However, existing SGP methods only focus on the tree-based chromosome representation and usually encounter the bloat issue and unsatisfactory generalization ability. To address these issues, we propose a new semantic linear GP (SLGP) algorithm. In SLGP, we design a new chromosome representation to encode the programs and semantic information in a linear fashion. To utilize the semantic information more effectively, we further propose a novel semantic genetic operator, namely, mutate-and-divide propagation, to recursively propagate the semantic error within the linear program. The empirical results show that the proposed method has better training and test errors than the state-of-the-art algorithms in solving SR problems and can achieve a much smaller program size.
RESUMEN
Seaweed growth is often limited by light. Artificial light supply has been well studied in terrestrial agriculture, however, much less is known about its effect in seaweed aquaculture. In this study, the effects of four artificial light sources (white, red, green, and blue LEDs light) on a brown alga Sargassum fusiforme and a green alga Ulva pertusa were investigated. Seaweed growth, accumulation of photosynthetic pigments (chlorophyll a and carotenoid), and soluble protein were evaluated. White LED light was the optimal supplementary light when cultivating Ulva pertusa and Sargassum fusiforme, because it promoted seaweed growth while maintaining protein production. Meanwhile, red LED was unfavored in the cultivation of S. fusiforme, as it affected the seaweed growth and has a lower residual energy ratio underneath the water. LEDs would be a promising supplementary light source for seaweed cultivation.
RESUMEN
The addition of nanoparticles (NPs) to polymers is a powerful method to improve the mechanical and other properties of macromolecular materials. Such hybrid polymer-particle systems are also rich in fundamental soft matter physics. Among several factors contributing to mechanical reinforcement, a polymer-mediated NP network is considered to be the most important in polymer nanocomposites (PNCs). Here, we present an integrated experimental-theoretical study of the collective NP dynamics in model PNCs using X-ray photon correlation spectroscopy and microscopic statistical mechanics theory. Silica NPs dispersed in unentangled or entangled poly(2-vinylpyridine) matrices over a range of NP loadings are used. Static collective structure factors of the NP subsystems at temperatures above the bulk glass transition temperature reveal the formation of a network-like microstructure via polymer-mediated bridges at high NP loadings above the percolation threshold. The NP collective relaxation times are up to 3 orders of magnitude longer than the self-diffusion limit of isolated NPs and display a rich dependence with observation wavevector and NP loading. A mode-coupling theory dynamical analysis that incorporates the static polymer-mediated bridging structure and collective motions of NPs is performed. It captures well both the observed scattering wavevector and NP loading dependences of the collective NP dynamics in the unentangled polymer matrix, with modest quantitative deviations emerging for the entangled PNC samples. Additionally, we identify an unusual and weak temperature dependence of collective NP dynamics, in qualitative contrast with the mechanical response. Hence, the present study has revealed key aspects of the collective motions of NPs connected by polymer bridges in contact with a viscous adsorbing polymer medium and identifies some outstanding remaining challenges for the theoretical understanding of these complex soft materials.
RESUMEN
The catalyst-free electrochemical di- and trifluoromethylation/cyclization of N-substituted acrylamides was realized under external oxidant-free conditions. The strategy provides expedient access to fluoroalkylated oxindoles and 3,4-dihydroquinolin-2(1 H)-ones with ample scope and broad functional group tolerance by mild, direct electrolysis of sodium sulfinates in an undivided cell. Detailed mechanistic studies provided strong support for a SET-based reaction manifold.
RESUMEN
Multidrug resistance (MDR) is a main cause of chemotherapy failure and patient death. This situation usually involves a glycoprotein (P-gp) mediated drug efflux, resulting in a low cellular drug concentration and insensitivity. Here we report the design, synthesis and evaluation of novel (+/-)-securinine bivalents as P-gp inhibitors in vitro and in vivo. MTT assays reflected that bivalent mimetics of securinine particularly the virosecurinine bivalent mimetic 8C showed promissing MDR reversal potential in both P-gp highly expressed cell line HepG2/DOX and MCF-7/ADM. At a 10⯵M concentration, 8C can entirely reverse the resistance of HepG2/DOX to doxorubicin (DOX), and is more effective than the positive control verapamil (VRP). Fluorescence, flow cytometry, and DOX efflux assays demonstrated that 8C can facilitate the accumulation and diminish the efflux of intracellular DOX. Molecular docking analysis and western blot assays indicated that 8C accomplished this by competitively inhibiting the activity of P-gp rather than by affecting its expression. Compound 8C was also observed to reverse drug resistance effectively in xenograft models when combined with DOX. This study lays a foundation for the discovery of (+/-)-securinine ramifications as P-gp inhibitors and provides a promising lead compound 8C as a P-gp mediated MDR reversal agent.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Alcaloides , Antineoplásicos , Azepinas , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Lactonas , Piperidinas , Alcaloides/química , Alcaloides/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Azepinas/química , Azepinas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Compuestos Heterocíclicos de Anillo en Puente/química , Compuestos Heterocíclicos de Anillo en Puente/farmacología , Humanos , Lactonas/química , Lactonas/farmacología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Piperidinas/química , Piperidinas/farmacología , Verapamilo/farmacologíaRESUMEN
We report that the nanometer-scale architecture of polymer chains plays a crucial role in its protein resistant property over surface chemistry. Protein-repellent (noncharged), few nanometer thick polymer layers were designed with homopolymer chains physisorbed on solids. We evaluated the antifouling property of the hydrophilic or hydrophobic adsorbed homopolymer chains against bovine serum albumin in water. Molecular dynamics simulations along with sum frequency generation spectroscopy data revealed the self-organized nanoarchitecture of the adsorbed chains composed of inner nematic-like ordered segments and outer brush-like segments across homopolymer systems with different interactions among a polymer, substrate, and interfacial water. We propose that this structure acts as a dual barrier against protein adsorption.
RESUMEN
Developing therapeutic approaches that target neuronal differentiation will be greatly beneficial for the regeneration of neurons and synaptic networks in neurological diseases. Protein synthesis (mRNA translation) has recently been shown to regulate neurogenesis of neural stem/progenitor cells (NSPCs). However, it has remained unknown whether engineering translational machinery is a valid approach for manipulating neuronal differentiation. The present study identifies that a bivalent securinine compound SN3-L6, previously designed and synthesized by our group, induces potent neuronal differentiation through a novel translation-dependent mechanism. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis in Neuro-2a progenitor cells revealed that SN3-L6 upregulated a group of neurogenic transcription regulators, and also upregulated proteins involved in RNA processing, translation, and protein metabolism. Notably, puromycylation and metabolic labeling of newly synthesized proteins demonstrated that SN3-L6 induced rapid and robust activation of general mRNA translation. Importantly, mRNAs of the proneural transcription factors Foxp1, Foxp4, Hsf1, and Erf were among the targets that were translationally upregulated by SN3-L6. Either inhibition of translation or knockdown of these transcription factors blocked SN3-L6 activity. We finally confirmed that protein synthesis of a same set of transcription factors was upregulated in primary cortical NPCs. These findings together identify a new compound for translational activation and neuronal differentiation, and provide compelling evidence that reprogramming transcriptional regulation network at translational levels is a promising strategy for engineering NSPCs.
RESUMEN
Drug-resistant bacteria associated with biofilm formation are rapidly on the rise, requiring novel therapeutic options to combat biofilm induced drug-resistance. In this study, a class of 3-hydroxy-2-(phenylhydroxy-methyl)-6-methyl-4H-pyran-4-one derivatives (1a-1e) were found by screening of an in-house compound library to be potential Pseudomonas aeruginosa biofilm inhibitors. Thirty one novel 2-substituted 3-hydroxy-6-methyl-4H-pyran-4-one derivatives were synthesized and assayed for their biofilm inhibitory activity. A promising biofilm inhibitor 6a was identified, and showed an obvious biofilm inhibitory effect even at a concentration of 2.5⯵M. Further mechanism studies revealed that 6a only shows inhibitory effects on the expression of pqsA-gfp in a fluorescent reporter strain, and the production of a PQS- regulated virulence factor, pyocyanin. This indicates that this type of compound exercises its anti-biofilm activity specifically through the PQS pathway. Novel chemical biofilm inhibitors are described here and guard against biofilm formation associated with Pseudomonas aeruginosa infections.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Piranos/química , Piranos/farmacología , Animales , Antibacterianos/síntesis química , Humanos , Metilación , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/fisiología , Piranos/síntesis química , Percepción de Quorum/efectos de los fármacos , Células RAW 264.7RESUMEN
Seaweeds are good bio-monitors of heavy metal pollution and have been included in European coastal monitoring programs. However, data for seaweed species in China are scarce or missing. In this study, we explored the potential of seaweeds as bio-monitor by screening the natural occurring seaweeds in the "Kingdom of seaweed and shellfish" at Dongtou Islands, the East China Sea. Totally, 12 seaweed species were collected from six sites, with richness following the sequence of Rhodophyta > Phaeophyta > Chlorophyta. The concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Cd, As) in the seaweeds was determined, and the bioaccumulation coefficient was calculated. A combination of four seaweeds, Pachydictyon coriaceum, Gelidium divaricatum, Sargassum thunbergii, and Pterocladiella capillacea, were proposed as bio-monitors due to their high bioaccumulation capabilities of specific heavy metals in the East China Sea and hence hinted the importance of using seaweed community for monitoring of pollution rather than single species. Our results provide first-hand data for the selection of bio-monitor species for heavy metals in the East China Sea and contribute to selection of cosmopolitan bio-monitor communities over geographical large area, which will benefit the establishment of monitoring programs for coastal heavy metal contamination.
Asunto(s)
Chlorophyta/química , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Phaeophyceae/química , Rhodophyta/química , Contaminantes Químicos del Agua/análisis , China , Contaminación Ambiental , Islas , Metales Pesados/química , Algas Marinas , Mariscos , Contaminantes Químicos del Agua/químicaRESUMEN
The exotic plant Spartina alterniflora was introduced to Yueqing Bay more than 20 years ago for tidal land reclamation and as a defense against typhoons, but it has rapidly expanded and caused enormous ecological consequences. Mapping the spread and distribution of S. alterniflora is the first step toward understanding the factors that determine the population expansion patterns. Remote sensing is a promising tool to monitor the expansion of S. alterniflora. Twelve Landsat TM images and Support Vector Machine (SVM) were used to delineate the invasion of S. alterniflora from 1993 to 2009, and SPOT 6 images and Object-Based Image Analysis (OBIA) were used to map the distribution of S. alterniflora in 2014. In situ data and Unmanned Aerial Vehicle (UAV) images were used as supplementary data. S. alterniflora spread rapidly in Yueqing Bay over the past 21 years. Between 1993 and 2009, the area of S. alterniflora increased by 608 times (from 4 to 2432 ha). The rapid expansion of S. alterniflora covered almost all of the bare mudflats around the mangrove forests and the cultivated mudflats. However, from 2009 to 2014, the rate of expansion of S. alterniflora began to slow down in Yueqing Bay, and the total area of S. alterniflora in Yantian decreased by 275 ha. These phenomena can be explained by the landscape changes and ecological niches. Through the expansion of S. alterniflora, it was found that the ecological significance and environmental impact of S. alterniflora was different in different regions in Yueqing Bay. The conservation plans for Yueqing Bay should consider both the positive and negative effects of S. alterniflora, and the governmental policy should be based on the different circumstances of the regions.