Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Immunity ; 50(4): 1069-1083.e8, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926233

RESUMEN

Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.


Asunto(s)
Acné Vulgar/inmunología , Células Dendríticas/clasificación , Infecciones por Bacterias Grampositivas/inmunología , Infiltración Neutrófila/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología , Acné Vulgar/microbiología , Animales , Presentación de Antígeno , Quimiotaxis de Leucocito/inmunología , Células Dendríticas/inmunología , Oído Externo , Regulación de la Expresión Génica , Ontología de Genes , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inyecciones Intradérmicas , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Propionibacterium acnes , ARN Mensajero/biosíntesis , Análisis de la Célula Individual , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
2.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723550

RESUMEN

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hematopoyesis , Macrófagos/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis
3.
Clin Immunol ; 264: 110241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735508

RESUMEN

Primary Sjögren disease (pSD) is an autoimmune disease characterized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment with demonstrated efficacy is available yet. To better understand the biology underlying pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summarize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We performed unsupervised gene classification on four data sets and identified thirteen CMs. We annotated and interpreted each of these CMs as corresponding to cell type abundances or biological functions by using gene set enrichment analyses and transcriptomic profiles of sorted blood cell subsets. Correlation with independently measured cell type abundances by flow cytometry confirmed these annotations. We used these CMs to reconcile previously proposed patient stratifications of pSD. Importantly, we showed that the expression of modules representing lymphocytes and erythrocytes before treatment initiation is associated with response to hydroxychloroquine and leflunomide combination therapy in a clinical trial. These consensus modules will help the identification and translation of blood-based predictive biomarkers for the treatment of pSD.


Asunto(s)
Biomarcadores , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/genética , Síndrome de Sjögren/sangre , Biomarcadores/sangre , Transcriptoma , Perfilación de la Expresión Génica/métodos , Hidroxicloroquina/uso terapéutico , Femenino , Redes Reguladoras de Genes , Linfocitos/metabolismo
5.
Nature ; 546(7660): 662-666, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28614294

RESUMEN

During gestation the developing human fetus is exposed to a diverse range of potentially immune-stimulatory molecules including semi-allogeneic antigens from maternal cells, substances from ingested amniotic fluid, food antigens, and microbes. Yet the capacity of the fetal immune system, including antigen-presenting cells, to detect and respond to such stimuli remains unclear. In particular, dendritic cells, which are crucial for effective immunity and tolerance, remain poorly characterized in the developing fetus. Here we show that subsets of antigen-presenting cells can be identified in fetal tissues and are related to adult populations of antigen-presenting cells. Similar to adult dendritic cells, fetal dendritic cells migrate to lymph nodes and respond to toll-like receptor ligation; however, they differ markedly in their response to allogeneic antigens, strongly promoting regulatory T-cell induction and inhibiting T-cell tumour-necrosis factor-α production through arginase-2 activity. Our results reveal a previously unappreciated role of dendritic cells within the developing fetus and indicate that they mediate homeostatic immune-suppressive responses during gestation.


Asunto(s)
Arginasa/metabolismo , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Feto/inmunología , Tolerancia Inmunológica , Linfocitos T/inmunología , Adulto , Movimiento Celular , Proliferación Celular , Citocinas/biosíntesis , Citocinas/inmunología , Feto/citología , Feto/enzimología , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos T/citología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Receptores Toll-Like/inmunología
6.
Med Sci (Paris) ; 30(4): 378-84, 2014 Apr.
Artículo en Francés | MEDLINE | ID: mdl-24801031

RESUMEN

Metastasis is the main cause of cancer-related death. While the development of clinically detectable metastases occurs only at late time points, recent data obtained in mice and humans indicate that cancer cell dissemination is an early event in the progression of several types of cancer. However, disseminated cancer cells can remain dormant for prolonged periods of time. Then, how do cancer cells acquire the ability to disseminate so early? What are the selective pressures driving their dissemination? What are the signals controlling dormancy and why do some cancer cells eventually escape these controls? The present review presents our current understanding on these questions and how this novel paradigm could be translated to the clinic.


Asunto(s)
Metástasis de la Neoplasia/patología , Animales , Humanos
7.
Nat Commun ; 14(1): 5291, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652913

RESUMEN

Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.


Asunto(s)
Galectina 3 , Esclerodermia Sistémica , Animales , Ratones , Galectina 3/genética , Estudios Transversales , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/genética , Anticuerpos Monoclonales , Modelos Animales de Enfermedad , Ácido Hipocloroso
8.
Expert Rev Clin Immunol ; 18(1): 47-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842494

RESUMEN

INTRODUCTION: The complex pathophysiology of autoimmune diseases (AIDs) is being progressively deciphered, providing evidence for a multiplicity of pro-inflammatory pathways underlying heterogeneous clinical phenotypes and disease evolution. AREAS COVERED: Treatment strategies involving drug combinations are emerging as a preferred option to achieve remission in a vast majority of patients affected by systemic AIDs. The design of appropriate drug combinations can benefit from AID modeling following a comprehensive multi-omics molecular profiling of patients combined with Artificial Intelligence (AI)-powered computational analyses. Such disease models support patient stratification in homogeneous subgroups, shed light on dysregulated pro-inflammatory pathways and yield hypotheses regarding potential therapeutic targets and candidate biomarkers to stratify and monitor patients during treatment. AID models inform the rational design of combination therapies interfering with independent pro-inflammatory pathways related to either one of five prominent immune compartments contributing to the pathophysiology of AIDs, i.e. pro-inflammatory signals originating from tissues, innate immune mechanisms, T lymphocyte activation, autoantibodies and B cell activation, as well as soluble mediators involved in immune cross-talk. EXPERT OPINION: The optimal management of AIDs in the future will rely upon rationally designed combination therapies, as a modality of a model-based Computational Precision Medicine taking into account the patients' biological and clinical specificities.


Asunto(s)
Enfermedades Autoinmunes , Medicina de Precisión , Inteligencia Artificial , Enfermedades Autoinmunes/tratamiento farmacológico , Biomarcadores , Terapia Combinada , Humanos
9.
Expert Opin Drug Discov ; 17(8): 815-824, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35786124

RESUMEN

INTRODUCTION: As a mid-size international pharmaceutical company, we initiated 4 years ago the launch of a dedicated high-throughput computing platform supporting drug discovery. The platform named 'Patrimony' was built up on the initial predicate to capitalize on our proprietary data while leveraging public data sources in order to foster a Computational Precision Medicine approach with the power of artificial intelligence. AREAS COVERED: Specifically, Patrimony is designed to identify novel therapeutic target candidates. With several successful use cases in immuno-inflammatory diseases, and current ongoing extension to applications to oncology and neurology, we document how this industrial computational platform has had a transformational impact on our R&D, making it more competitive, as well time and cost effective through a model-based educated selection of therapeutic targets and drug candidates. EXPERT OPINION: We report our achievements, but also our challenges in implementing data access and governance processes, building up hardware and user interfaces, and acculturing scientists to use predictive models to inform decisions.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Humanos , Medicina de Precisión
10.
PLoS One ; 16(7): e0254374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34293006

RESUMEN

While establishing worldwide collective immunity with anti SARS-CoV-2 vaccines, COVID-19 remains a major health issue with dramatic ensuing economic consequences. In the transition, repurposing existing drugs remains the fastest cost-effective approach to alleviate the burden on health services, most particularly by reducing the incidence of the acute respiratory distress syndrome associated with severe COVID-19. We undertook a computational repurposing approach to identify candidate therapeutic drugs to control progression towards severe airways inflammation during COVID-19. Molecular profiling data were obtained from public sources regarding SARS-CoV-2 infected epithelial or endothelial cells, immune dysregulations associated with severe COVID-19 and lung inflammation induced by other respiratory viruses. From these data, we generated a protein-protein interactome modeling the evolution of lung inflammation during COVID-19 from inception to an established cytokine release syndrome. This predictive model assembling severe COVID-19-related proteins supports a role for known contributors to the cytokine storm such as IL1ß, IL6, TNFα, JAK2, but also less prominent actors such as IL17, IL23 and C5a. Importantly our analysis points out to alarmins such as TSLP, IL33, members of the S100 family and their receptors (ST2, RAGE) as targets of major therapeutic interest. By evaluating the network-based distances between severe COVID-19-related proteins and known drug targets, network computing identified drugs which could be repurposed to prevent or slow down progression towards severe airways inflammation. This analysis confirmed the interest of dexamethasone, JAK2 inhibitors, estrogens and further identified various drugs either available or in development interacting with the aforementioned targets. We most particularly recommend considering various inhibitors of alarmins or their receptors, currently receiving little attention in this indication, as candidate treatments for severe COVID-19.


Asunto(s)
Alarminas/inmunología , Antivirales/farmacología , COVID-19/complicaciones , Reposicionamiento de Medicamentos , Neumonía/complicaciones , Neumonía/tratamiento farmacológico , Antivirales/inmunología , Antivirales/uso terapéutico , Humanos , Neumonía/inmunología
11.
Nat Commun ; 12(1): 3523, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112769

RESUMEN

There is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics. Here, we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren's syndrome patients based on the multi-omic profiling of whole blood samples from a European cohort of over 300 patients, and a similar number of age and gender-matched healthy volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cytometry data, combined with clinical parameters, we identify four groups of patients with distinct patterns of immune dysregulation. The biomarkers we identify can be used by machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation of response to treatments in clinical trials.


Asunto(s)
Citocinas/sangre , Metilación de ADN , Interferones/sangre , Proteoma/metabolismo , Síndrome de Sjögren/inmunología , Transcriptoma/genética , Adulto , Autoanticuerpos/sangre , Biomarcadores/sangre , Quimiocinas/análisis , Quimiocinas/genética , Quimiocinas/metabolismo , Estudios de Cohortes , Biología Computacional , Simulación por Computador , Estudios Transversales , Citocinas/análisis , Citocinas/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Bases de Datos de Proteínas , Femenino , Citometría de Flujo , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interferones/genética , Masculino , Persona de Mediana Edad , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Proteoma/genética , RNA-Seq , Síndrome de Sjögren/sangre , Síndrome de Sjögren/genética , Síndrome de Sjögren/fisiopatología
12.
Front Physiol ; 10: 572, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178745

RESUMEN

Aging is the main risk factor for developing diabetes and other age-related diseases. One of the most common features of age-related comorbidities is the presence of low-grade chronic inflammation. This is also the case of metabolic syndrome and diabetes. At the subclinical level, a pro-inflammatory phenotype was shown to be associated with Type-2 diabetes mellitus (T2DM). This low to mid-grade inflammation is also present in elderly individuals and has been termed inflammaging. Whether inflammation is a component of aging or exclusively associated with age-related diseases in not entirely known. We used clinical data and biological readouts in a group of individuals stratified by age, diabetes status and comorbidities to investigate this aspect. While aging is the main predisposing factor for several diseases there is a concomitant increased level of pro-inflammatory cytokines. DM patients show an increased level of sTNFRll, sICAM-1, and TIMP-1 when compared to Healthy, Non-DM and Pre-DM individuals. These inflammatory molecules are also associated with insulin resistance and metabolic syndrome in Non-DM and pre-DM individuals. We also show that metformin monotherapy was associated with significantly lower levels of inflammatory molecules, like TNFα, sTNFRI, and sTNFRII, when compared to other monotherapies. Longitudinal follow up indicates a higher proportion of death occurs in individuals taking other monotherapies compared to metformin monotherapy. Together our finding shows that chronic inflammation is present in healthy elderly individuals and exacerbated with diabetes patients. Likewise, metformin could help target age-related chronic inflammation in general, and reduce the predisposition to comorbidities and mortality.

14.
Oncotarget ; 5(23): 12027-42, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25294815

RESUMEN

M2 macrophages promote tumor growth and metastasis, but their interactions with specific tumor cell populations are poorly characterized. Using a mouse model of spontaneous melanoma, we showed that CD34- but not CD34+ tumor-initiating cells (TICs) depend on M2 macrophages for survival and proliferation. Tumor-associated macrophages (TAMs) and macrophage-conditioned media protected CD34- TICs from chemotherapy in vitro. In vivo, while inhibition of CD115 suppressed the macrophage-dependent CD34- TIC population, chemotherapy accelerated its development. The ability of TICs to respond to TAMs was acquired during melanoma progression and immediately preceded a surge in metastatic outgrowth. TAM-derived transforming growth factor-ß (TGFß) and polyamines produced via the Arginase pathway were critical for stimulation of TICs and synergized to promote their growth.


Asunto(s)
Arginasa/metabolismo , Macrófagos/inmunología , Melanoma/inmunología , Melanoma/metabolismo , Células Madre Neoplásicas/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Melanoma/patología , Ratones , Ratones Mutantes , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal/inmunología
15.
Immunol Res ; 53(1-3): 229-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22407576

RESUMEN

The immune system has multiple, complex, and sometimes opposing roles during cancer progression. While immune-compromised individuals have a higher incidence of cancers, inflammation is also associated with increased risk of disease progression. It is becoming apparent that simple measures of immune responses in the blood are of limited use in cancer. Instead, the importance of the exact identity and functional characteristics of tumor-infiltrating immune cells is increasingly recognized. This realization has led to recent studies that have revealed a critical role for chemokine expression in the tumor microenvironment and suggested a therapeutic potential of manipulating intratumoral expression of chemokines to alter the local immune milieu.


Asunto(s)
Biomarcadores de Tumor/inmunología , Quimiocinas/inmunología , Neoplasias/diagnóstico , Neoplasias/inmunología , Animales , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad , Vigilancia Inmunológica , Ratones , Ratones Transgénicos , Neoplasias/genética , Pronóstico , Microambiente Tumoral
16.
J Exp Med ; 207(12): 2561-8, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-20975043

RESUMEN

CD4(+)CD25(+)FoxP3(+) regulatory T cells (T reg cells) play a major role in the control of immune responses but the factors controlling their homeostasis and function remain poorly characterized. Nicotinamide adenine dinucleotide (NAD(+)) released during cell damage or inflammation results in ART2.2-mediated ADP-ribosylation of the cytolytic P2X7 receptor on T cells. We show that T reg cells express the ART2.2 enzyme and high levels of P2X7 and that T reg cells can be depleted by intravenous injection of NAD(+). Moreover, lower T reg cell numbers are found in mice deficient for the NAD-hydrolase CD38 than in wild-type, P2X7-deficient, or ART2-deficient mice, indicating a role for extracellular NAD(+) in T reg cell homeostasis. Even routine cell preparation leads to release of NAD(+) in sufficient quantities to profoundly affect T reg cell viability, phenotype, and function. We demonstrate that T reg cells can be protected from the deleterious effects of NAD(+) by an inhibitory ART2.2-specific single domain antibody. Furthermore, selective depletion of T reg cells by systemic administration of NAD(+) can be used to promote an antitumor response in several mouse tumor models. Collectively, our data demonstrate that NAD(+) influences survival, phenotype, and function of T reg cells and provide proof of principle that acting on the ART2-P2X7 pathway represents a new strategy to manipulate T reg cells in vivo.


Asunto(s)
ADP Ribosa Transferasas/fisiología , Factores de Transcripción Forkhead/análisis , NAD/fisiología , Receptores Purinérgicos P2X7/fisiología , Linfocitos T Reguladores/fisiología , Animales , Apoptosis , Selectina L/fisiología , Ratones , Ratones Endogámicos C57BL , NAD/análisis , Fosfatidilserinas/metabolismo , Transducción de Señal
17.
J Immunol ; 179(1): 186-94, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17579037

RESUMEN

Mono ADP-ribosyltransferase 2 (ART2) is an ectoenzyme expressed on mouse T lymphocytes, which catalyze the transfer of ADP-ribose groups from NAD(+) onto several target proteins. In vitro, ADP-ribosylation by ART2 activates the P2X7 ATP receptor and is responsible for NAD(+)-induced T cell death (NICD). Yet, the origin of extracellular NAD(+) and the role of NICD in vivo remain elusive. In a model of acute inflammation induced by polyacrylamide beads, we demonstrate release of NAD(+) into exudates during the early phase of the inflammatory response. This leads to T cell depletion in the draining lymph nodes from wild-type and, more severely, from mice lacking the CD38 NAD(+) glycohydrolase, whereas no effect is observed in ART2-deficient animals. Intravenous injection of NAD(+) used to exacerbate NICD in vivo results in fast and dramatic ART2- and P2X7-dependent depletion of CD4+ and CD8+ T lymphocytes, which can affect up to 80% of peripheral T cells in CD38(-/-) mice. This affects mainly naive T cells as most cells surviving in vivo NAD+ treatment exhibit the phenotype of recently activated/memory cells. Consistently, treatment with NAD(+) abolishes primary Ab response to a T-dependent Ag in NICD-susceptible CD38(-/-) mice but has no effect on the secondary response when given several days after priming. Unexpectedly NAD+ treatment improves the response in their wild-type BALB/c counterparts. We propose that NAD(+) released during early inflammation facilitates the expansion of primed T cells, through ART2-driven death of resting cells, thus contributing to the dynamic regulation of T cell homeostasis.


Asunto(s)
ADP Ribosa Transferasas/fisiología , Homeostasis/inmunología , Mediadores de Inflamación/metabolismo , NAD/metabolismo , Fase de Descanso del Ciclo Celular/inmunología , Subgrupos de Linfocitos T/enzimología , Subgrupos de Linfocitos T/patología , ADP Ribosa Transferasas/deficiencia , ADP Ribosa Transferasas/genética , Enfermedad Aguda , Animales , Apoptosis/inmunología , Muerte Celular/inmunología , Homeostasis/genética , Memoria Inmunológica , Inmunofenotipificación , Mediadores de Inflamación/fisiología , Inyecciones Intravenosas , Activación de Linfocitos/inmunología , Depleción Linfocítica , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , NAD/administración & dosificación , NAD/biosíntesis , NAD/fisiología , Oxidación-Reducción , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA