Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 38(24): e101822, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31736111

RESUMEN

Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.


Asunto(s)
Arabidopsis/inmunología , Mecanismos de Defensa , Concentración de Iones de Hidrógeno , Desarrollo de la Planta/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Pared Celular , Celulosa/metabolismo , Fusariosis , Fusarium/patogenicidad , Glucosiltransferasas , Proteínas Asociadas a Microtúbulos/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico
2.
Proc Natl Acad Sci U S A ; 115(46): 11838-11843, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30377268

RESUMEN

Multicellularity arose independently in plants and animals, but invariably requires a robust determination and maintenance of cell fate that is adaptive to the environment. This is exemplified by the highly specialized water- and nutrient-conducting cells of the plant vasculature, the organization of which is already prepatterned close to the stem-cell niche, but can be modified according to extrinsic cues. Here, we show that the hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is required for root vascular cell-fate maintenance, as BRI1 mutants show ectopic xylem in procambial position. However, this phenotype seems unrelated to canonical brassinosteroid signaling outputs. Instead, BRI1 is required for the expression and function of its interacting partner RECEPTOR-LIKE PROTEIN 44 (RLP44), which, in turn, associates with the receptor for the peptide hormone phytosulfokine (PSK). We show that PSK signaling is required for the maintenance of procambial cell identity and quantitatively controlled by RLP44, which promotes complex formation between the PSK receptor and its coreceptor. Mimicking the loss of RLP44, PSK-related mutants show ectopic xylem in the position of the procambium, whereas rlp44 is rescued by exogenous PSK. Based on these findings, we propose that RLP44 controls cell fate by connecting BRI1 and PSK signaling, providing a mechanistic framework for the dynamic balancing of signaling mediated by the plethora of plant receptor-like kinases at the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Diferenciación Celular/fisiología , Hormonas Peptídicas/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología
3.
Curr Protoc Plant Biol ; 5(3): e20113, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598078

RESUMEN

Root vascular pathogens are some of the world's most devastating plant pathogens. However, the methods used to determine plant susceptibility to this class of pathogen are laborious, variable, and in most cases qualitative. Here we present a rapid, simple, and robust infection assay for the characterization of Arabidopsis thaliana resistance to the fungal root pathogen Fusarium oxysporum. The method utilizes fungal root vascular penetrations and fungal-induced root growth inhibition to deliver a quantitative assessment of plant susceptibility with spatial and temporal resolution. These plant susceptibility indicators are paired with a semiautomated data analysis pipeline to deliver a reproducible assessment of plant susceptibility to root vascular pathogens such as F. oxysporum. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Arabidopsis thaliana plate infection assay using fluorescently labeled Fusarium oxysporum Support Protocol 1: Preparation of A. thaliana germination plates Support Protocol 2: Preparation of the F. oxysporum culture Basic Protocol 2: Data acquisition of F. oxysporum plant infection assay Support Protocol 3: Acquiring root growth inhibition data using Fiji.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fusarium , Fiji , Enfermedades de las Plantas , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA