Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Carbohydr Polym ; 328: 121734, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220328

RESUMEN

Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.


Asunto(s)
Cartílago Articular , Ácido Hialurónico , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Cartílago , Condrocitos , Regeneración , Hidrogeles/farmacología
2.
Adv Drug Deliv Rev ; 212: 115386, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971180

RESUMEN

To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.

3.
Macromol Biosci ; 24(7): e2300590, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488862

RESUMEN

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.


Asunto(s)
Citosol , Nanopartículas , Humanos , Citosol/metabolismo , Nanopartículas/química , Orgánulos/metabolismo , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Sistema de Administración de Fármacos con Nanopartículas/química , Portadores de Fármacos/química
4.
Biomater Sci ; 12(12): 3045-3067, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38712883

RESUMEN

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).


Asunto(s)
Nanopartículas , Humanos , Animales , Administración Oral , Nanopartículas/química , Nanopartículas/administración & dosificación , Sistemas de Liberación de Medicamentos , Sistema de Administración de Fármacos con Nanopartículas/química
5.
Biofabrication ; 16(4)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39053497

RESUMEN

Three-dimensional cell spheroids show promise for the reconstruction of native tissues. Herein, we report a sophisticated, uniform, and highly reproducible spheroid culture system for tissue reconstruction. A mesh-integrated culture system was designed to precisely control the uniformity and reproducibility of spheroid formation. Furthermore, we synthesized hexanoyl glycol chitosan, a material with ultralow cell adhesion properties, to further improve spheroid formation efficiency and biological function. Our results demonstrate improved biological function in various types of cells and ability to generate spheroids with complex structures composed of multiple cell types. In conclusion, our spheroid culture system offers a highly effective and widely applicable approach to generating customized spheroids with desired structural and biological features for a variety of biomedical applications.


Asunto(s)
Técnicas de Cultivo de Célula , Quitosano , Medicina Regenerativa , Esferoides Celulares , Esferoides Celulares/citología , Quitosano/química , Humanos , Técnicas de Cultivo de Célula/métodos , Ingeniería de Tejidos/métodos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA