Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 30(2): 124-135, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071477

RESUMEN

The hydrogen peroxide-induced small RNA OxyS has been proposed to originate from the 3' UTR of a peroxide mRNA. Unexpectedly, phylogenetic OxyS targetome predictions indicate that most OxyS targets belong to the category of "cell cycle," including cell division and cell elongation. Previously, we reported that Escherichia coli OxyS inhibits cell division by repressing expression of the essential transcription termination factor nusG, thereby leading to the expression of the KilR protein, which interferes with the function of the major cell division protein, FtsZ. By interfering with cell division, OxyS brings about cell-cycle arrest, thus allowing DNA damage repair. Cell division and cell elongation are opposing functions to the extent that inhibition of cell division requires a parallel inhibition of cell elongation for the cells to survive. In this study, we report that in addition to cell division, OxyS inhibits mepS, which encodes an essential peptidoglycan endopeptidase that is responsible for cell elongation. Our study indicates that cell-cycle arrest and balancing between cell division and cell elongation are important and conserved functions of the oxidative stress-induced sRNA OxyS.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Factores de Transcripción/genética , Escherichia coli/genética , Escherichia coli/metabolismo , División Celular/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo
2.
Ann Hematol ; 103(9): 3775-3782, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39046509

RESUMEN

Hemophagocytic Lymphohistiocytosis (HLH) is a rare disorder of immune dysregulation characterized by fever, cytopenias, and splenomegaly. Its primary form poses a therapeutic challenge due to its high fatality when left untreated. We retrospectively analyzed 28 patients who underwent related-donor allogeneic stem cell transplant for primary HLH from 2010 to 2021. Among them were 10 cases of familial HLH, 8 cases of Griscelli syndrome type 2, and 1 case each with PRF1 and STX11 mutations. All the patients underwent transplants with reduced-intensity or myeloablative conditioning and 26 of them achieved neutrophil engraftment at a median of day + 14. The donors were either fully matched (68%) or haploidentical (32%). With a median follow-up of 1 year, overall survival was 68% (n = 19) and disease-free survival was 64.4% (n = 18). OS was better in patients transplanted with a sibling donor (compared to parent donor), who achieved complete donor chimerism, and those transplanted early in the course of the disease (diagnosis to transplant duration less than 6 months).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/mortalidad , Masculino , Femenino , Estudios Retrospectivos , Adolescente , Niño , Preescolar , Adulto , Lactante , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo , Aloinjertos , Adulto Joven , Piebaldismo/terapia , Persona de Mediana Edad , Tasa de Supervivencia , Supervivencia sin Enfermedad , Estudios de Seguimiento , Enfermedades de Inmunodeficiencia Primaria , Perforina
3.
Pak J Pharm Sci ; 33(2): 589-595, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32276902

RESUMEN

This work presents a pilot method of hematological diagnosis about changes in: shape, size and rouleaux formation, cell count of leucocytes and platelet cells in the presence of different glucose [C6H12O6] and water [H2O] concentrations. The 2D microscopic images after addition of ten different glucose concentrations to normal blood (0 mM- 450 mM) revealed the lyses (disintegration) of white blood cells (WBCs). This work provides a baseline to diagnose blood disorders and complications at labs and clinical environment.


Asunto(s)
Plaquetas/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Solución Hipertónica de Glucosa/toxicidad , Leucocitos/efectos de los fármacos , Agua/efectos adversos , Plaquetas/metabolismo , Plaquetas/patología , Forma de la Célula/fisiología , Destilación , Relación Dosis-Respuesta a Droga , Solución Hipertónica de Glucosa/administración & dosificación , Humanos , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Agua/administración & dosificación
4.
Nanotechnology ; 27(6): 065708, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26762814

RESUMEN

Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

5.
Pak J Pharm Sci ; 29(4): 1237-42, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27393437

RESUMEN

Designing and implementation of non-invasive methods for glucose monitoring in blood is main focus of biomedical scientists to provide a relief from skin puncturing of diabete patient. The objective of this research work is to investigate the shape deformations and the aggregation of red blood cells (RBCs) in the human blood after addition of three different analytes i) (0mM-400mM: Range) of glucose (C(6)H(12)O(6)), ii) (0mM-400mM: range) of pure salt (NaCl) and iii) (0mM- 350mM: range) of pure water (H(2)O). We have observed that the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose, salts and pure water. This demonstration also provides a base line to facilitate diabetes during partial diagnosis and monitoring of the glucose levels qualitatively both in research laboratories and clinical environment.


Asunto(s)
Eritrocitos/efectos de los fármacos , Glucosa/farmacología , Cloruro de Sodio/farmacología , Agua/farmacología , Agregación Eritrocitaria/efectos de los fármacos , Deformación Eritrocítica/efectos de los fármacos , Humanos , Técnicas In Vitro
6.
J Mol Model ; 30(9): 299, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107564

RESUMEN

CONTEXT: Novel optoelectronic and thermoelectric properties with broad compositional range, non-toxic nature and structural stability make halide-based double perovskites fascinating for flexible optoelectronic devices. In this work, the structural electronic, optical and transport properties of Rb2TlSbX6 (X = Cl, Br, I) were studied using density functional theory for optoelectronic devices. The elastic analysis demonstrates ductile nature, mechanical stability, anisotropic behaviour and feasibility for flexible optoelectronic devices. The band structure study using Tran-Blaha-modified Becke-Johnson (TB-mBJ) potential shows that all studied materials have direct bandgap. In addition, the bandgap of Rb2TlSbCl6 is more appropriate for optoelectronic devices. The small loss and maximum absorption in visible regions make these materials prime candidates for optoelectronic devices. The transport features indicate that all the studied double perovskites reflect p-type semiconducting behaviour as highlighted by positive Seebeck coefficient values. Furthermore, the high power factor values of Rb2TlSbX6 (X = Cl, Br, I) double perovskites make them suitable for thermoelectric device applications at high temperatures. Based on electronic optical and thermoelectric properties Rb2TlSbCl6 is the best candidate for flexible optoelectronic devices. METHODS: In this paper, structural optimization of Rb2TlSbX6 (X = Cl, Br, I) double perovskites was conducted utilizing the Wien2k software based on first principle calculations with Perdew-Burke-Ernzerhof's generalized-gradient approximation (PBE-sol approximation). The TB-mBJ potential was employed to compute the accurate band gap of studied materials. The thermoelectric properties are evaluated with BoltzTraP code, showing a predominance of P-type charge carriers in all studied perovskites. This methodological strategy verifies the material's remarkable stability and optical properties and offers a solid framework for examining its potential in optoelectronic devices.

7.
ACS Omega ; 8(21): 18617-18625, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273634

RESUMEN

Metallic or metal oxide-based nanoparticles have the potential to inactivate viruses. Among various metals, copper has shown edge over others. One of the rapidly evolving areas is to combine nanoscience for production of self-sanitizing antiviral surfaces. In this study, we designed antiviral-coated fabrics to combat the spread of viruses. Copper oxide nanoparticles were sonochemically synthesized and subsequently deposited using the dip-coat process to modify the surface of fabric. The morphology and structure of uncoated and coated fabrics were examined by scanning electron microscopy, X-ray diffraction, FTIR, and elemental analysis. The findings show that small, agglomerated rugby ball structures made of copper oxide (CuO) nanoparticles (16 ± 1.6 nm, according to the Scherrer equation) develop on the surface of fabric, resulting in nano-embossing and a hydrophobic (contact angle > 140°) surface. The CuO-coated fabric yielded the maximum zone of inhibition for antibacterial activity. The virucidal activity (against human adenovirus-B) of CuO nanoparticle-fabricated fabric against adenovirus shows decreased 99.99% according to the ISO 18184 testing standard. With the dip and dry approach, any textile industry can use the simple coating procedure without having to change its textile operations. This fabric can be widely used in the face mask, clothing, bedding, and aprons, and the coating remains efficient over more than 25 washes.

8.
J Mol Model ; 29(11): 347, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872270

RESUMEN

CONTEXT: In the present work, the cubic phase of the chalcogenide materials, i.e., A2MoSe4 (A =Li, K) is examined to explore the structural, optoelectronic, magnetic, mechanical, vibrational, and thermodynamic properties. The lattice parameters for Li2MoSe4 are found to be a= 7.62 Å with lattice angles of α=ß=γ=90° whereas for K2MoSe4, a= 8.43 Å, and α=ß=γ=90°. These materials are categorized as semiconductors because Li2MoSe4 and K2MoSe4 exhibit direct energy band gap worth 1.32 eV and 1.61 eV, respectively through HSE06 functional. The optical analysis has declared them efficient materials for optoelectronic applications because both materials are found to be effective absorbers of ultraviolet radiations. These materials are noticed to be brittle while possessing anisotropic behavior for various mechanical applications. The vibrational properties are explored to check the thermal stability of the materials. On the basis of thermodynamics and heat capacity response, Li2MoSe4 is more stable than K2MoSe4. The results of our study lay the groundwork for future research on the physical characteristics of ternary transition metal chalcogenides (TMC). METHODS: These physical properties are explored for the first time while using a first-principles approach based on density functional theory (DFT) in the framework of Cambridge Serial Total Energy Package (CASTEP) by Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functional. However, GGA+U and HSE06 are also employed to improve electronic properties. Kramers-Kronig relations are used to evaluate the dielectric function with a smearing value of 0.5 eV. Voigt-Reuss-Hill approximation is used for seeking the elastic response of these materials. The thermodynamic response is sought by harmonic approximation. The density functional perturbation theory (DFPT) approach is used for investigating atomic vibrations.

10.
RSC Adv ; 13(16): 11192-11200, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37056964

RESUMEN

Hybrid lead halide perovskites have been considered as promising candidates for a large variety of optoelectronic applications. By exploring novel combinations of lead-free double perovskite halides, it is possible to find a suitable replacement for poisonous lead halide perovskites, enhancing electronic and optical response for their application as optically-influenced resistive switching random access memory (RRAM). In this work, the structural, mechanical, elastic, electronic, optical, and thermoelectric characteristics of lead-free double halide perovskites were investigated by Vienna ab initio simulation package (VASP) to explore their role in RRAM. From the analysis of mechanical constraints, it is clear that all three composites of Cs2CaSnX6 (X = Cl, Br, I) are mechanically stable and ductile in nature. The electronic bandgap with and without spin-orbit coupling (SOC), and total and sub-total density of states (TDOS, sub-TDOS) have been calculated using the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) potentials. The observed direct band gaps of 3.58 eV, 3.09 eV, and 2.60 eV for Cs2CaSnCl6, Cs2CaSnBr6, and Cs2CaSnI6, respectively, reveal the suitability of these specified composites as resistive switching material for RRAM devices. Additionally, the optical characteristics, such as complex refractive index, absorption coefficient, and reflectivity of the compounds under consideration have been calculated under the action of incident photons of 0 to 14 eV energy. The thermoelectric properties of Cs2CaSnX6 (X = Cl, Br, I) double perovskite halide were computed and analyzed with the help of the BoltzTraP Code.

11.
J Coll Physicians Surg Pak ; 32(12): 1626-1628, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36474390

RESUMEN

Glanzmann's thrombasthenia (GT) is an autosomal recessive bleeding disorder characterised by mucocutaneous bleeding. At molecular level, defect in platelet receptor glycoprotein (GP) IIb/IIIa leads to defective platelet aggregation. Anti-fibrinolytic agents, platelet transfusions, and factor rVIIa are used for prophylaxis before invasive procedures and treatment of bleeding events. Allogeneic stem cell transplant is the only curative option. Here, we report cases of two adult male patients who underwent matched sibling donor stem cell transplantation for GT with recurrent bleeding requiring platelet and red cell transfusions. Both showed marked improvement in quality of life. To conclude, stem cell transplant is a viable treatment option for severe, difficult-to-control cases of GT. Key Words: Platelet disorders, Hematopoietic stem cell transplantation, Thrombasthenia.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Calidad de Vida , Humanos , Adulto , Masculino , Hermanos , Trasplante de Células Madre
12.
RSC Adv ; 12(7): 4395-4407, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425429

RESUMEN

The first-principles approach has been used while employing the Perdew-Burke-Ernzerhof exchange-correlation functional of generalized gradient approximation (PBE-GGA) along with the Hubbard parameter to study the structural, optoelectronic, mechanical and magnetic properties of titanium-based MAX materials Ti3AC2 (A = P, As, Cd) for the first time. As there is no band gap found between the valence and conduction bands in the considered materials, these compounds belong to the conductor family of materials. A mechanical analysis carried out at pressures of 0 GPa to 20 GPa and the calculated elastic constants C ij reveal the stability of these materials. Elastic parameters, i.e., Young's, shear and bulk moduli, anisotropy factor and Poisson's ratio, have been investigated in the framework of the Voigt-Reuss-Hill approximation. The calculated values of relative stiffness are found to be greater than ½ for Ti3PC2 and Ti3AsC2, which indicates that these compounds are closer to typical ceramics, which possess low damage tolerance and fracture toughness. Optical parameters, i.e., dielectric complex function, refractive index, extinction coefficient, absorption coefficient, loss function, conductivity and reflectivity, have also been investigated. These dynamically stable antiferromagnetic materials might have potential applications in advanced electronic and magnetic devices. Their high strength and significant hardness make these materials potential candidates as hard coatings.

13.
RSC Adv ; 12(19): 11649-11656, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35432948

RESUMEN

Atomic Layer Deposition (ALD) was used for a tri-layer structure (HfO2/Al2O3/HfO2) at low temperature over an Indium Tin Oxide (ITO) transparent electrode. First, the microstructure of the fabricated TaN/HfO2/Al2O3/HfO2/ITO RRAM device was examined by the cross-sectional High-Resolution Transmission Electron Microscopy (HRTEM). Then, Energy Dispersive X-ray Spectroscopy (EDS) was performed to probe compositional mapping. The bipolar resistive switching mode of the device was confirmed through SET/RESET characteristic plots for 100 cycles as a function of applied biasing voltage. An endurance test was performed for 100 DC switching cycles @0.2 V wherein; data retention was found up to 104 s. Moreover, for better insight into the charge conduction mechanism in tri-layer HfO2/Al2O3/HfO2, based on oxygen vacancies (VOX), total density of states (TDOS), partial density of states (PDOS) and isosurface three-dimensional charge density analysis was performed using WEIN2k and VASP simulation packages under Perdew-Burke-Ernzerhof _Generalized Gradient approximation (PBE-GGA). The experimental and theoretical outcomes can help in finding proper stacking of the active resistive switching (RS) layer for resistive random-access memory (RRAM) applications.

14.
Micromachines (Basel) ; 13(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144121

RESUMEN

In this paper, we demonstrate a device using a Ni/SiN/BN/p+-Si structure with improved performance in terms of a good ON/OFF ratio, excellent stability, and low power consumption when compared with single-layer Ni/SiN/p+-Si and Ni/BN/p+-Si devices. Its switching mechanism can be explained by trapping and de-trapping via nitride-related vacancies. We also reveal how higher nonlinearity and rectification ratio in a bilayer device is beneficial for enlarging the read margin in a cross-point array structure. In addition, we conduct a theoretical investigation for the interface charge accumulation/depletion in the SiN/BN layers that are responsible for defect creation at the interface and how this accounts for the improved switching characteristics.

15.
J Mol Graph Model ; 103: 107825, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33429230

RESUMEN

The structural, electronic and thermoelectric properties of AZr1-xMxO3 (A = Ba, Ca, Sr; M = Al, Cu, x = 0.25) without and with an oxygen vacancy (Vo) have been unveiled using the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) functional along with Tran-Blaha modified Becke-Jonhson (TB-mBJ)approximation based on Density Functional Theory (DFT) in the framework of WIEN2k code for memristors applications. Moreover, isosurface charge density plots have been calculated by using Vienna ab initio Simulation Package (VASP) simulation code. The analysis of structural parameters reveals that substituting Zr4+ with Al3+ and Cu2+ causes the lattice distortion which tends to increase in the presence of Vo along with dopant. The study of band structure, density of states (DOS) and isosurface charge density plots predict the enhanced charge conduction and formation of conducting filaments (CFs) for all composites with dopant and/or Vo. Moreover, spin polarized density of states for Cu doped composites has also been calculated to confirm the large exchange splitting of Cu-3d states. The thermoelectric characteristics of considered composites have also been explored using the Boltztrap code to better explain the semi-classical Boltzmann transport theory. Thermoelectric parameters confirm the semiconductor nature of all composites, ensuring the compatibility for memristors and thermoelectric devices applications. In addition to this spin polarized thermoelectric behavior of Cu doped composites that ensure the contribution of spin down (↓) states of Cu for charge transport mechanism. The SrZrCuO3+Vo composite is found most promising candidate followed by BaZrCuO3 for memristors applications while, CaZrCuO3 is found most suitable amongst studied composites for thermoelectric devices.


Asunto(s)
Electrónica , Oxígeno , Simulación por Computador , Conductividad Eléctrica , Semiconductores
16.
Bone Marrow Transplant ; 56(4): 863-872, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184452

RESUMEN

Management of rare hematological disorders pose unique diagnostic and therapeutic challenges due to unusual occurrence and limited treatment options. We retrospectively identified 45 patients receiving matched related donor transplant for rare hematological disorders from 2006 to 2019. Patients were divided into two groups (1) malignant and (2) non malignant. The malignant disorder group included four patients while the nonmalignant group included 41 patients divided into immune dysregulation (n = 23), bone marrow failure (n = 10), metabolic (n = 5), and bleeding diathesis (n = 3). Twenty-six (57.8%) patients received myeloablative conditioning (MAC) and 16 (35.6%) received reduced intensity conditioning (RIC), while 3 (6.6%) patients with severe combined immunodeficiency received stem cell infusion alone without conditioning. The cumulative incidence (CI) of grade II-IV acute GVHD (aGVHD) was 39.1% (n = 18) and chronic GVHD (cGVHD) 15.2% (n = 7). There was no primary graft failure while CI of secondary graft failure was 9%. Overall survival (OS) and disease-free survival (DFS) was 82.2% and 77.8% respectively. Group wise OS was 75% in the malignant group, 82.6% in the immune dysregulation group, 80% in patients with metabolic disorders and bone marrow failure, while 100% in patients with bleeding diathesis. This retrospective analysis shows that hematopoietic stem cell transplant can be a feasible treatment option for rare hematological disorders.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Pakistán , Estudios Retrospectivos , Acondicionamiento Pretrasplante
17.
Sci Rep ; 10(1): 10841, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616915

RESUMEN

Controllable release of nutrients in soil can overcome the environmental problems associated with conventional fertilizer. Here we synthesized mesoporous nanocomposite of Zinc aluminosilicate (ZnAl2Si10O24) via co-precipitation method. Oryza sativa L. husk was used as source of silica for making the synthesis process green and economical. The nanocomposite was subsequently loaded with urea to achieve the demand of simultaneous and slow delivery of both zinc and urea. The structural characterization of nanocomposite was done by FTIR, XRD, TGA, BET, SEM/EDX and TEM. The release of urea and zinc was investigated with UV-Vis spectrophotometry and atomic absorption spectroscopy, respectively, up to 14 days. It was noted that urea holding capacity of mesoporous ZnAl2Si10O24 nanocomposite over long period of time was increased as compared to bulk aluminosilicates, due to its high surface area (193.07 m2 g-1) and small particle size of (64 nm). Urea release was found highest in first 24 h because of excess of adsorption on nanocomposite and least at 14th day. Fertilizer efficiency was checked on Oryza sativa L. in comparison with commercial urea and results showed significantly higher yield in case of urea loaded ZnAl2Si10O24 nanocomposite.

18.
J Mol Graph Model ; 99: 107621, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32339899

RESUMEN

The mechanical, magnetic and thermoelectric properties of spin polarized XGaO3 (X = Sc, Ti, Ag) perovskite oxides in cubic phase have been investigated using LDA + U functional through ab-initio study based on density functional theory (DFT) in the framework of WIEN2K simulation code. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) technique along with PBE-GGA functional have been used to optimize the systems and determining exchange-correlation potential. However, in order to address on-site self-interactions error and overcome limitations of PBE-GGA functional, LDA + U has been employed because Hubbard parameter 'U' is found an appropriate remedy to consider on-site self-interactions, and to calculate improved electronic energy band gap. All spin polarized band structures reveal indirect band gap with different energies Eg (eV) such as ↑↓ 0.98 eV for ScGaO3, ↑1.05 eV and ↓1.70 eV for TiGaO3, ↑1.13 eV and ↓2.19 eV for AgGaO3. Thus, all compounds are semiconductor in nature. The analysis of spin polarized total and partial density of states unveil that ScGaO3 is non-magnetic material, whereas, TiGaO3 and AgGaO3 are characterized by strong exchange splitting of 3d (Ti) and 4d (Ag) states with significant spin magnetic moments, i.e., 1.0002 µB and -2.0002 µB, respectively. The elastic constants, i.e., Bulk, Young and Shear moduli, Poisson's coefficient, Anisotropy factor, Pugh's ratio, Cauchy pressure and melting temperature are calculated through Viogt-Reuss-Hill approximation. The thermoelectric response of the considered perovskites has been determined through semi-classical Boltzmann transport theory in the framework of BoltzTraP simulation code. Basic understandings of the mechanical, magnetic and thermoelectric properties of these compounds are studied for the first time in this manuscript.


Asunto(s)
Plata , Titanio , Compuestos de Calcio , Fenómenos Magnéticos , Óxidos
19.
Nanomaterials (Basel) ; 10(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455892

RESUMEN

Brain-inspired artificial synaptic devices and neurons have the potential for application in future neuromorphic computing as they consume low energy. In this study, the memristive switching characteristics of a nitride-based device with two amorphous layers (SiN/BN) is investigated. We demonstrate the coexistence of filamentary (abrupt) and interface (homogeneous) switching of Ni/SiN/BN/n++-Si devices. A better gradual conductance modulation is achieved for interface-type switching as compared with filamentary switching for an artificial synaptic device using appropriate voltage pulse stimulations. The improved classification accuracy for the interface switching (85.6%) is confirmed and compared to the accuracy of the filamentary switching mode (75.1%) by a three-layer neural network (784 × 128 × 10). Furthermore, the spike-timing-dependent plasticity characteristics of the synaptic device are also demonstrated. The results indicate the possibility of achieving an artificial synapse with a bilayer SiN/BN structure.

20.
ACS Appl Mater Interfaces ; 12(30): 33908-33916, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32608233

RESUMEN

In this study, the resistive switching and synaptic properties of a complementary metal-oxide semiconductor-compatible Ti/a-BN/Si device are investigated for neuromorphic systems. A gradual change in resistance is observed in a positive SET operation in which Ti diffusion is involved in the conducting path. This operation is extremely suitable for synaptic devices in hardware-based neuromorphic systems. The isosurface charge density plots and experimental results confirm that boron vacancies can help generate a conducting path, whereas the conducting path generated by a Ti cation from interdiffusion forms is limited. A negative SET operation causes a considerable decrease in the formation energy of only boron vacancies, thereby increasing the conductivity in the low-resistance state, which may be related to RESET failure and poor endurance. The pulse transient characteristics, potentiation and depression characteristics, and good retention property of eight multilevel cells also indicate that the positive SET operation is more suitable for a synaptic device owing to the gradual modulation of conductance. Moreover, pattern recognition accuracy is examined by considering the conductance values of the measured data in the Ti/a-BN/Si device as the synaptic part of a neural network. The linear and symmetric synaptic weight update in a positive SET operation with an incremental voltage pulse scheme ensures higher pattern recognition accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA