Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 30(6): 808-14, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24167158

RESUMEN

MOTIVATION: With the advancement of high-throughput techniques, large-scale profiling of biological systems with multiple experimental perturbations is becoming more prevalent. Pathway analysis incorporates prior biological knowledge to analyze genes/proteins in groups in a biological context. However, the hypotheses under investigation are often confined to a 1D space (i.e. up, down, either or mixed regulation). Here, we develop direction pathway analysis (DPA), which can be applied to test hypothesis in a high-dimensional space for identifying pathways that display distinct responses across multiple perturbations. RESULTS: Our DPA approach allows for the identification of pathways that display distinct responses across multiple perturbations. To demonstrate the utility and effectiveness, we evaluated DPA under various simulated scenarios and applied it to study insulin action in adipocytes. A major action of insulin in adipocytes is to regulate the movement of proteins from the interior to the cell surface membrane. Quantitative mass spectrometry-based proteomics was used to study this process on a large-scale. The combined dataset comprises four separate treatments. By applying DPA, we identified that several insulin responsive pathways in the plasma membrane trafficking are only partially dependent on the insulin-regulated kinase Akt. We subsequently validated our findings through targeted analysis of key proteins from these pathways using immunoblotting and live cell microscopy. Our results demonstrate that DPA can be applied to dissect pathway networks testing diverse hypotheses and integrating multiple experimental perturbations. AVAILABILITY AND IMPLEMENTATION: The R package 'directPA' is distributed from CRAN under GNU General Public License (GPL)-3 and can be downloaded from: http://cran.r-project.org/web/packages/directPA/index.html CONTACT: jean.yang@sydney.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Insulina/metabolismo , Proteómica/métodos , Adipocitos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Programas Informáticos
2.
Nucleic Acids Res ; 37(8): e60, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19295134

RESUMEN

Over the past decade, a class of small RNA molecules called microRNAs (miRNAs) has been shown to regulate gene expression at the post-transcription stage. While early work focused on the identification of miRNAs using a combination of experimental and computational techniques, subsequent studies have focused on identification of miRNA-target mRNA pairs as each miRNA can have hundreds of mRNA targets. The experimental validation of some miRNAs as oncogenic has provided further motivation for research in this area. In this article we propose an odds-ratio (OR) statistic for identification of regulatory miRNAs. It is based on integrative analysis of matched miRNA and mRNA time-course microarray data. The OR-statistic was used for (i) identification of miRNAs with regulatory potential, (ii) identification of miRNA-target mRNA pairs and (iii) identification of time lags between changes in miRNA expression and those of its target mRNAs. We applied the OR-statistic to a cancer data set and identified a small set of miRNAs that were negatively correlated to mRNAs. A literature survey revealed that some of the miRNAs that were predicted to be regulatory, were indeed oncogenic or tumor suppressors. Finally, some of the predicted miRNA targets have been shown to be experimentally valid.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Algoritmos , Línea Celular Tumoral , Humanos , Cinética , Neoplasias/genética , Oportunidad Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA