Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 156(1-2): 158-69, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24361105

RESUMEN

The Arg/N-end rule pathway targets for degradation proteins that bear specific unacetylated N-terminal residues while the Ac/N-end rule pathway targets proteins through their N(α)-terminally acetylated (Nt-acetylated) residues. Here, we show that Ubr1, the ubiquitin ligase of the Arg/N-end rule pathway, recognizes unacetylated N-terminal methionine if it is followed by a hydrophobic residue. This capability of Ubr1 expands the range of substrates that can be targeted for degradation by the Arg/N-end rule pathway because virtually all nascent cellular proteins bear N-terminal methionine. We identified Msn4, Sry1, Arl3, and Pre5 as examples of normal or misfolded proteins that can be destroyed through the recognition of their unacetylated N-terminal methionine. Inasmuch as proteins bearing the Nt-acetylated N-terminal methionine residue are substrates of the Ac/N-end rule pathway, the resulting complementarity of the Arg/N-end rule and Ac/N-end rule pathways enables the elimination of protein substrates regardless of acetylation state of N-terminal methionine in these substrates.


Asunto(s)
Metionina/metabolismo , Señales de Clasificación de Proteína , Proteolisis , Secuencia de Aminoácidos , Animales , Redes y Vías Metabólicas , Ratones , Datos de Secuencia Molecular , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(31): e2209597119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878037

RESUMEN

N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3'-proximal segment of the tRNAArg moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.


Asunto(s)
Aminoaciltransferasas , Arginina , Modelos Moleculares , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Arginina/metabolismo , Hemina/metabolismo , Mutación , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteolisis , ARN de Transferencia de Arginina/metabolismo
3.
J Biol Chem ; 299(5): 104652, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990220

RESUMEN

N-formyl methionine (fMet)-containing proteins are produced in bacteria, eukaryotic organelles mitochondria and plastids, and even in cytosol. However, Nα-terminally formylated proteins have been poorly characterized because of the lack of appropriate tools to detect fMet independently of downstream proximal sequences. Using a fMet-Gly-Ser-Gly-Cys peptide as an antigen, we generated a pan-fMet-specific rabbit polyclonal antibody called anti-fMet. The raised anti-fMet recognized universally and sequence context-independently Nt-formylated proteins in bacterial, yeast, and human cells as determined by a peptide spot array, dot blotting, and immunoblotting. We anticipate that the anti-fMet antibody will be broadly used to enable an understanding of the poorly explored functions and mechanisms of Nt-formylated proteins in various organisms.


Asunto(s)
Anticuerpos , Especificidad de Anticuerpos , N-Formilmetionina , Proteínas , Animales , Humanos , Conejos , Anticuerpos/análisis , Anticuerpos/inmunología , Bacterias/química , Citosol/metabolismo , Sueros Inmunes/análisis , Sueros Inmunes/inmunología , Immunoblotting , Mitocondrias/metabolismo , N-Formilmetionina/análisis , N-Formilmetionina/inmunología , Proteínas/análisis , Proteínas/química , Proteínas/inmunología , Proteínas/metabolismo , Saccharomyces cerevisiae/química
4.
Mol Cell ; 62(1): 7-20, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052731

RESUMEN

The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways.


Asunto(s)
Metabolismo de los Lípidos , Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/química , Proteína Tirosina Quinasa ZAP-70/metabolismo , Dominios Homologos src , Sitios de Unión , Células Cultivadas , Humanos , Células Jurkat , Modelos Moleculares , Simulación del Acoplamiento Molecular , Fosfotirosina/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
5.
Biochem Biophys Res Commun ; 666: 186-194, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-36932026

RESUMEN

Ubiquitin (Ub) is highly conserved in all eukaryotic organisms and begins at the N-terminus with Met and Gln. Our recent research demonstrates that N-terminally (Nt-) arginylated Ub can be produced in the yeast Saccharomyces cerevisiae. However, the existence of Nt-arginylated Ub in multicellular organisms remains unknown. Here we explore the mechanism for creating Nt-arginylated Ub using human embryonic kidney HEK293 cells that express various Nt-modified Ubs. We found that Gln-starting Q-Ub was converted into Glu-starting E-Ub by NTAQ1 Nt-deamidase and subsequently Nt-arginylated by ATE1 arginyltransferase in HEK293 cells. We also found that the resulting Arg-Glu-starting RE-Ub was mainly deposited on the Lys119 residue of histone H2A. Furthermore, RING1B E3 Ub ligase mediated the attachment of RE-Ub to H2A. These findings reveal a previously unknown type of histone ubiquitylation which greatly increases the combinatorial complexity of histone and ubiquitin codes.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Histonas , Células HEK293 , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 50(4): 540-51, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23603116

RESUMEN

N(α)-terminal acetylation of cellular proteins was recently discovered to create specific degradation signals termed Ac/N-degrons and targeted by the Ac/N-end rule pathway. We show that Hcn1, a subunit of the APC/C ubiquitin ligase, contains an Ac/N-degron that is repressed by Cut9, another APC/C subunit and the ligand of Hcn1. Cog1, a subunit of the Golgi-associated COG complex, is also shown to contain an Ac/N-degron. Cog2 and Cog3, direct ligands of Cog1, can repress this degron. The subunit decoy technique was used to show that the long-lived endogenous Cog1 is destabilized and destroyed via its activated (unshielded) Ac/N-degron if the total level of Cog1 increased in a cell. Hcn1 and Cog1 are the first examples of protein regulation through the physiologically relevant transitions that shield and unshield natural Ac/N-degrons. This mechanistically straightforward circuit can employ the demonstrated conditionality of Ac/N-degrons to regulate subunit stoichiometries and other aspects of protein quality control.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Acetilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Immunoblotting , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mutación , Unión Proteica , Proteolisis , Proteínas Represoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
J Biol Chem ; 294(12): 4464-4476, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30674553

RESUMEN

All organisms begin protein synthesis with methionine (Met). The resulting initiator Met of nascent proteins is irreversibly processed by Met aminopeptidases (MetAPs). N-terminal (Nt) Met excision (NME) is an evolutionarily conserved and essential process operating on up to two-thirds of proteins. However, the universal function of NME remains largely unknown. MetAPs have a well-known processing preference for Nt-Met with Ala, Ser, Gly, Thr, Cys, Pro, or Val at position 2, but using CHX-chase assays to assess protein degradation in yeast cells, as well as protein-binding and RT-qPCR assays, we demonstrate here that NME also occurs on nascent proteins bearing Met-Asn or Met-Gln at their N termini. We found that the NME at these termini exposes the tertiary destabilizing Nt residues (Asn or Gln) of the Arg/N-end rule pathway, which degrades proteins according to the composition of their Nt residues. We also identified a yeast DNA repair protein, MQ-Rad16, bearing a Met-Gln N terminus, as well as a human tropomyosin-receptor kinase-fused gene (TFG) protein, MN-TFG, bearing a Met-Asn N terminus as physiological, MetAP-processed Arg/N-end rule substrates. Furthermore, we show that the loss of the components of the Arg/N-end rule pathway substantially suppresses the growth defects of naa20Δ yeast cells lacking the catalytic subunit of NatB Nt acetylase at 37 °C. Collectively, the results of our study reveal that NME is a key upstream step for the creation of the Arg/N-end rule substrates bearing tertiary destabilizing residues in vivo.


Asunto(s)
Arginina/metabolismo , Metionina/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas/química , Proteínas/metabolismo , Proteolisis
8.
J Biol Chem ; 294(1): 379-388, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30425097

RESUMEN

Perilipin 2 (PLIN2) is a major lipid droplet (LD)-associated protein that regulates intracellular lipid homeostasis and LD formation. Under lipid-deprived conditions, the LD-unbound (free) form of PLIN2 is eliminated in the cytosol by an as yet unknown ubiquitin (Ub)-proteasome pathway that is associated with the N-terminal or near N-terminal residues of the protein. Here, using HeLa, HEK293T, and HepG2 human cell lines, cycloheximide chase, in vivo ubiquitylation, split-Ub yeast two-hybrid, and chemical cross-linking-based reciprocal co-immunoprecipitation assays, we found that TEB4 (MARCH6), an E3 Ub ligase and recognition component of the Ac/N-end rule pathway, directly targets the N-terminal acetyl moiety of Nα-terminally acetylated PLIN2 for its polyubiquitylation and degradation by the 26S proteasome. We also show that the TEB4-mediated Ac/N-end rule pathway reduces intracellular LD accumulation by degrading PLIN2. Collectively, these findings identify PLIN2 as a substrate of the Ac/N-end rule pathway and indicate a previously unappreciated role of the Ac/N-end rule pathway in LD metabolism.


Asunto(s)
Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo , Proteolisis , Ubiquitinación , Acetilación , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Perilipina-2/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Anal Chem ; 92(9): 6462-6469, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267142

RESUMEN

The field of terminal proteomics is limited in that it is optimized for large-scale analysis via multistep processes involving liquid chromatography. Here, we present an integrated N-terminal peptide enrichment method (iNrich) that can handle as little as 25 µg of cell lysate via a single-stage encapsulated solid-phase extraction column. iNrich enables simple, rapid, and reproducible sample processing, treatment of a wide range of protein amounts (25 µg ∼ 1 mg), multiplexed parallel sample preparation, and in-stage sample prefractionation using a mixed-anion-exchange filter. We identified ∼5000 N-terminal peptides (Nt-peptides) from only 100 µg of human cell lysate including Nt-formyl peptides. Multiplexed sample preparation facilitated quantitative and robust enrichment of N-terminome with dozens of samples simultaneously. We further developed the method to incorporate isobaric tags such as a tandem mass tag (TMT) and used it to discover novel peptides during ER stress analysis. The iNrich facilitated high-throughput N-terminomics and degradomics at a low cost using commercially available reagents and apparatus, without requiring arduous procedures.


Asunto(s)
Péptidos/química , Proteoma/análisis , Células Cultivadas , Cromatografía Liquida , Humanos , Concentración de Iones de Hidrógeno , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
10.
J Biol Chem ; 291(33): 17178-96, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27339900

RESUMEN

Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two "complementary" forms of rat AANAT are targeted for degradation by two "complementary" branches of the N-end rule pathway. Specifically, the N(α)-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Mutación , Proteolisis , Ubiquitinación/fisiología , Acetilación , Animales , N-Acetiltransferasa de Arilalquilamina/genética , Células HEK293 , Humanos , Ratas , Saccharomyces cerevisiae
11.
J Biol Chem ; 290(13): 8321-30, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25681444

RESUMEN

The Ssl1/p44 subunit is a core component of the yeast/mammalian general transcription factor TFIIH, which is involved in transcription and DNA repair. Ssl1/p44 binds to and stimulates the Rad3/XPD helicase activity of TFIIH. To understand the helicase stimulatory mechanism of Ssl1/p44, we determined the crystal structure of the N-terminal regulatory domain of Ssl1 from Saccharomyces cerevisiae. Ssl1 forms a von Willebrand factor A fold in which a central six-stranded ß-sheet is sandwiched between three α helices on both sides. Structural and biochemical analyses of Ssl1/p44 revealed that the ß4-α5 loop, which is frequently found at the interface between von Willebrand factor A family proteins and cellular counterparts, is critical for the stimulation of Rad3/XPD. Yeast genetics analyses showed that double mutation of Leu-239 and Ser-240 in the ß4-α5 loop of Ssl1 leads to lethality of a yeast strain, demonstrating the importance of the Rad3-Ssl1 interactions to cell viability. Here, we provide a structural model for the Rad3/XPD-Ssl1/p44 complex and insights into how the binding of Ssl1/p44 contributes to the helicase activity of Rad3/XPD and cell viability.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Helicasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo
12.
Sci Rep ; 14(1): 14900, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942903

RESUMEN

Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.


Asunto(s)
Amidohidrolasas , Proliferación Celular , Citosol , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Citosol/metabolismo , Ratones , Línea Celular Tumoral , Amidohidrolasas/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Antígeno CD24/metabolismo , Factores de Transcripción SOXB1/metabolismo , Progresión de la Enfermedad , Metionina/metabolismo , Metionina/análogos & derivados
13.
Trends Cell Biol ; 33(12): 1088-1103, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558595

RESUMEN

Ferroptosis is the type of cell death arising from uncontrolled and excessive lipid peroxidation. NADPH is essential for ferroptosis regulation because it supplies reducing equivalents for antioxidant defense systems and contributes to the generation of reactive oxygen species. Moreover, NADPH level serves as a biomarker for predicting the sensitivity of cells to ferroptosis. The ubiquitin-proteasome system governs the stability of many ferroptosis effectors. Recent research has revealed MARCHF6, the endoplasmic reticulum ubiquitin ligase, as an unprecedented NADPH sensor in the ubiquitin system and a critical regulator of ferroptosis involved in tumorigenesis and fetal development. This review summarizes the current understanding of NADPH metabolism and the ubiquitin-proteasome system in regulating ferroptosis and highlights the emerging importance of MARCHF6 as a vital connector between NADPH metabolism and ferroptosis.


Asunto(s)
Ferroptosis , Humanos , Ferroptosis/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , NADP/metabolismo , Ubiquitina/metabolismo , Muerte Celular , Peroxidación de Lípido/fisiología , Especies Reactivas de Oxígeno/metabolismo
14.
Cell Rep ; 42(7): 112746, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421621

RESUMEN

The metabolic prohormone pro-opiomelanocortin (POMC) is generally translocated into the endoplasmic reticulum (ER) for entry into the secretory pathway. Patients with mutations within the signal peptide (SP) of POMC or its adjoining segment develop metabolic disorders. However, the existence, metabolic fate, and functional outcomes of cytosol-retained POMC remain unclear. Here, we show that SP-uncleaved POMC is produced in the cytosol of POMC neuronal cells, thus inducing ER stress and ferroptotic cell death. Mechanistically, the cytosol-retained POMC sequesters the chaperone Hspa5 and subsequently accelerates degradation of the glutathione peroxidase Gpx4, a core regulator of ferroptosis, via the chaperone-mediated autophagy. We also show that the Marchf6 E3 ubiquitin ligase mediates the degradation of cytosol-retained POMC, thereby preventing ER stress and ferroptosis. Furthermore, POMC-Cre-mediated Marchf6-deficient mice exhibit hyperphagia, reduced energy expenditure, and weight gain. These findings suggest that Marchf6 is a critical regulator of ER stress, ferroptosis, and metabolic homeostasis in POMC neurons.


Asunto(s)
Estrés del Retículo Endoplásmico , Ferroptosis , Neuronas , Ubiquitina-Proteína Ligasas , Animales , Ratones , Estrés del Retículo Endoplásmico/fisiología , Homeostasis/fisiología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(7): 2142-7, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19164530

RESUMEN

O(6)-methylguanine (O(6)meG) and related modifications of guanine in double-stranded DNA are functionally severe lesions that can be produced by many alkylating agents, including N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a potent carcinogen. O(6)meG is repaired through its demethylation by the O(6)-alkylguanine-DNA alkyltransferase (AGT). This protein is called Mgmt (or MGMT) in mammals and Mgt1 in the yeast Saccharomyces cerevisiae. AGT proteins remove methyl and other alkyl groups from an alkylated O(6) in guanine by transferring the adduct to an active-site cysteine residue. The resulting S-alkyl-Cys of AGT is not restored back to Cys, so repair proteins of this kind can act only once. We report here that S. cerevisiae Mgt1 is cotargeted for degradation, through a degron near its N terminus, by 2 ubiquitin-mediated proteolytic systems, the Ubr1/Rad6-dependent N-end rule pathway and the Ufd4/Ubc4-dependent ubiquitin fusion degradation (UFD) pathway. The cotargeting of Mgt1 by these pathways is synergistic, in that it increases not only the yield of polyubiquitylated Mgt1, but also the processivity of polyubiquitylation. The N-end rule and UFD pathways comediate both the constitutive and MNNG-accelerated degradation of Mgt1. Yeast cells lacking the Ubr1 and Ufd4 ubiquitin ligases were hyperresistant to MNNG but hypersensitive to the toxicity of overexpressed Mgt1. We consider ramifications of this discovery for the control of DNA repair and mechanisms of substrate targeting by the ubiquitin system.


Asunto(s)
O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/fisiología , Saccharomyces cerevisiae/genética , Animales , Dominio Catalítico , Codón , Reparación del ADN , Proteínas Fúngicas , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Temperatura , Ubiquitina/química
16.
Mol Cells ; 45(3): 158-167, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35253655

RESUMEN

Ubiquitin (Ub) is post-translationally modified by Ub itself or Ub-like proteins, phosphorylation, and acetylation, among others, which elicits a variety of Ub topologies and cellular functions. However, N-terminal (Nt) modifications of Ub remain unknown, except the linear head-to-tail ubiquitylation via Nt-Met. Here, using the yeast Saccharomyces cerevisiae and an Nt-arginylated Ub-specific antibody, we found that the detectable level of Ub undergoes Nt-Met excision, Nt-deamination, and Nt-arginylation. The resulting Nt-arginylated Ub and its conjugated proteins are upregulated in the stationary-growth phase or by oxidative stress. We further proved the existence of Nt-arginylated Ub in vivo and identified Nt-arginylated Ub-protein conjugates using stable isotope labeling by amino acids in cell culture (SILAC)-based tandem mass spectrometry. In silico structural modeling of Nt-arginylated Ub predicted that Nt-Arg flexibly protrudes from the surface of the Ub, thereby most likely providing a docking site for the factors that recognize it. Collectively, these results reveal unprecedented Nt-arginylated Ub and the pathway by which it is produced, which greatly expands the known complexity of the Ub code.


Asunto(s)
Metionina , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Ubiquitina , Arginina/química , Desaminación , Metionina/química , Ubiquitina/química
17.
Nat Cell Biol ; 24(8): 1239-1251, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941365

RESUMEN

Ferroptosis is a unique form of cell death caused by excessive iron-dependent lipid peroxidation. The level of the anabolic reductant NADPH is a biomarker of ferroptosis sensitivity. However, specific regulators that detect cellular NADPH levels, thereby modulating downstream ferroptosis cascades, are largely unknown. We show here that the transmembrane endoplasmic reticulum MARCHF6 E3 ubiquitin ligase recognizes NADPH through its C-terminal regulatory region. This interaction upregulates the E3 ligase activity of MARCHF6, thus downregulating ferroptosis. We also found that MARCHF6 mediates the degradation of the key ferroptosis effectors ACSL4 and p53. Furthermore, inhibiting ferroptosis rescued the growth of MARCHF6-deficient tumours and peri-natal lethality of Marchf6-/- mice. Together, these findings identify MARCHF6 as a previously unknown NADPH sensor in the ubiquitin system and a crucial regulator of ferroptosis.


Asunto(s)
Ferroptosis , Animales , Muerte Celular , Ferroptosis/genética , Peroxidación de Lípido/fisiología , Ratones , NADP/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(49): 19188-93, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19033468

RESUMEN

Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. These residues are recognized by E3 ubiquitin ligases called N-recognins. Ubr1 is the N-recognin of the yeast Saccharomyces cerevisiae. Extracellular amino acids or short peptides up-regulate the peptide transporter gene PTR2, thereby increasing the capacity of a cell to import peptides. Cup9 is a transcriptional repressor that down-regulates PTR2. The induction of PTR2 by peptides or amino acids involves accelerated degradation of Cup9 by the N-end rule pathway. We report here that the Ubr1 N-recognin, which conditionally targets Cup9 for degradation, is phosphorylated in vivo at multiple sites, including Ser(300) and Tyr(277). We also show that the type-I casein kinases Yck1 and Yck2 phosphorylate Ubr1 on Ser(300), and thereby make possible ("prime") the subsequent (presumably sequential) phosphorylations of Ubr1 on Ser(296), Ser(292), Thr(288), and Tyr(277) by Mck1, a kinase of the glycogen synthase kinase 3 (Gsk3) family. Phosphorylation of Ubr1 on Tyr(277) by Mck1 is a previously undescribed example of a cascade-based tyrosine phosphorylation by a Gsk3-type kinase outside of autophosphorylation. We show that the Yck1/Yck2-mediated phosphorylation of Ubr1 on Ser(300) plays a major role in the control of peptide import by the N-end rule pathway. In contrast to phosphorylation on Ser(300), the subsequent (primed) phosphorylations, including the one on Tyr(277), have at most minor effects on the known properties of Ubr1, including regulation of peptide import. Thus, a biological role of the rest of Ubr1 phosphorylation cascade remains to be identified.


Asunto(s)
Dipéptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Quinasa de la Caseína I/metabolismo , Escherichia coli/genética , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 , Espectrometría de Masas , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Especificidad por Sustrato , Treonina/metabolismo , Tirosina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
19.
Sci Rep ; 10(1): 11183, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636430

RESUMEN

Mitochondria behave as functional and structural hubs for innate defense against intracellular infection. While the mitochondrial membrane serves as a platform for the assembly of signaling complexes activated by intracellular infection, various danger molecules derived from impaired mitochondria activate innate signaling pathways. Using methionyl-tRNA formyl transferase (MTFMT)-deficient cells, which exhibit impaired mitochondrial activity, we examined the role of mitochondrial integrity in regulating innate defense against infection. Since MTFMT functions at the early steps of mitochondrial translation, its loss was expected to cause defects in mitochondrial activity. Under transient MTFMT gene silencing conditions, we observed shortened mitochondria along with reduced activity. MTFMT-silenced cells were more susceptible to intracellular infection, as examined by infection with RNA viruses and the intracellular bacterium Shigella flexneri. In support of this observation, MTFMT-silenced cells possessed lowered basal NF-κB activity, which remained low after S. flexneri infection. In addition, the mitochondrial accumulation of evolutionarily conserved signaling intermediate in Toll pathway (ECSIT), an adaptor protein for NF-κB activation, was significantly decreased in MTFMT-silenced cells, explaining the reduced NF-κB activity observed in these cells. Since impaired mitochondria likely release mitochondrial molecules, we evaluated the contribution of mitochondrial N-formyl peptides to the regulation of bacterial infection. Transient transfection of mitochondrial-derived N-formyl peptides favored S. flexneri infection, which was accompanied by enhanced bacterial survival, but did not affect host cell viability. However, transient transfection of mitochondrial-derived N-formyl peptides did not affect basal NF-κB activity. Altogether, these data suggest that the integrity of mitochondria is essential to their proper function in protecting against infection, as intact mitochondria not only block the release of danger molecules but also serve as signaling hubs for the downstream NF-κB pathway.


Asunto(s)
Disentería Bacilar/genética , Transferasas de Hidroximetilo y Formilo/genética , Mitocondrias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Disentería Bacilar/inmunología , Células HeLa , Humanos , Transferasas de Hidroximetilo y Formilo/deficiencia , Transferasas de Hidroximetilo y Formilo/metabolismo , Inmunidad Innata , FN-kappa B/metabolismo , Receptores Toll-Like/metabolismo
20.
Front Plant Sci ; 11: 64, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117399

RESUMEN

Plants have two endosymbiotic organelles, chloroplast and mitochondrion. Although they have their own genomes, proteome assembly in these organelles depends on the import of proteins encoded by the nuclear genome. Previously, we elucidated the general design principles of chloroplast and mitochondrial targeting signals, transit peptide, and presequence, respectively, which are highly diverse in primary structure. Both targeting signals are composed of N-terminal specificity domain and C-terminal translocation domain. Especially, the N-terminal specificity domain of mitochondrial presequences contains multiple arginine residues and hydrophobic sequence motif. In this study we investigated whether the design principles of plant mitochondrial presequences can be applied to those in other eukaryotic species. We provide evidence that both presequences and import mechanisms are remarkably conserved throughout the species. In addition, we present evidence that the N-terminal specificity domain of presequence might have evolved from the bacterial TAT (twin-arginine translocation) signal sequence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA