Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(6): 904-915, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618834

RESUMEN

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.


Asunto(s)
Neoplasias de la Mama , Interleucina-15/metabolismo , Animales , Neoplasias de la Mama/genética , Linfocitos T CD8-positivos , Femenino , Granzimas , Humanos , Inmunidad Innata , Linfocitos , Ratones
3.
Nat Immunol ; 17(12): 1388-1396, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798617

RESUMEN

Fibroblastic reticular cells (FRCs) of secondary lymphoid organs form distinct niches for interaction with hematopoietic cells. We found here that production of the cytokine IL-15 by FRCs was essential for the maintenance of group 1 innate lymphoid cells (ILCs) in Peyer's patches and mesenteric lymph nodes. Moreover, FRC-specific ablation of the innate immunological sensing adaptor MyD88 unleashed IL-15 production by FRCs during infection with an enteropathogenic virus, which led to hyperactivation of group 1 ILCs and substantially altered the differentiation of helper T cells. Accelerated clearance of virus by group 1 ILCs precipitated severe intestinal inflammatory disease with commensal dysbiosis, loss of intestinal barrier function and diminished resistance to colonization. In sum, FRCs act as an 'on-demand' immunological 'rheostat' by restraining activation of group 1 ILCs and thereby preventing immunopathological damage in the intestine.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Enterobacteriaceae/inmunología , Fibroblastos/inmunología , Interleucina-15/metabolismo , Linfocitos/inmunología , Virus de la Hepatitis Murina/inmunología , Animales , Células Cultivadas , Inmunidad Innata , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ganglios Linfáticos Agregados/patología , Células TH1/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
4.
Immunity ; 48(2): 286-298.e6, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29396162

RESUMEN

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Glucocorticoides/farmacología , Receptores CXCR4/fisiología , Receptores de Interleucina-7/fisiología , Linfocitos T/inmunología , Animales , Células Cultivadas , Quimiocina CXCL12/biosíntesis , Femenino , Memoria Inmunológica , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/fisiología
5.
J Immunol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140896

RESUMEN

IL-7 and IL-2 are evolutionarily related cytokines that play critical roles in the development and expansion of immune cells. Although both IL-7R and IL-2R activate similar signaling molecules, whether their signals have specific or overlapping functions during lymphocyte differentiation remains unclear. To address this question, we generated IL-7R α-chain (IL-7Rα)/IL-2R ß-chain (IL-24ß) (72R) knock-in mice expressing a chimeric receptor consisting of the extracellular domain of IL-7Rα and the intracellular domain of IL-2Rß under the control of the endogenous IL-7Rα promoter. Notably, this 72R receptor induced higher levels of STAT5 and Akt phosphorylation in T cells. In the periphery of 72R mice, the number of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was increased, whereas early T cell progenitors and double-negative 2 thymocytes were reduced in the thymus. In addition, cell proliferation and Notch signaling were impaired in the early thymocytes of 72R mice, leading to their differentiation into thymic B cells. Interestingly, ILC2s were increased in the thymus of 72R mice. Early T cell progenitors from 72R mice, but not from wild-type mice, differentiated into NK cells and ILC2-like cells when cocultured with a thymic stromal cell line. Thus, this study indicates that the chimeric 72R receptor transduces more robust signals than the authentic IL-7Rα, thereby inducing the alternative differentiation of T cell progenitors into other cell lineages. This suggests that cytokine receptors may provide instructive signals for cell fate decisions.

6.
J Immunol ; 213(3): 283-295, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140825

RESUMEN

The IL-7R regulates the homeostasis, activation, and distribution of T cells in peripheral tissues. Although several transcriptional enhancers that regulate IL-7Rα expression in αß T cells have been identified, enhancers active in γδ T cells remain unknown. In this article, we discovered an evolutionarily conserved noncoding sequence (CNS) in intron 2 of the IL-7Rα-chain (IL-7Rα) locus and named this region CNS9. CNS9 contained a conserved retinoic acid receptor-related orphan receptor (ROR)-responsive element (RORE) and exerted RORγt-dependent enhancer activity in vitro. Mice harboring point mutations in the RORE in CNS9 (CNS9-RORmut) showed reduced IL-7Rα expression in IL-17-producing Vγ4+ γδ T cells. In addition, the cell number and IL-17A production of Vγ4+ γδ T cells were reduced in the adipose tissue of CNS9-RORmut mice. Consistent with the reduction in IL-17A, CNS9-RORmut mice exhibited decreased IL-33 expression in the adipose tissue, resulting in fewer regulatory T cells and glucose intolerance. The CNS9-ROR motif was partially responsible for IL-7Rα expression in RORγt+ regulatory T cells, whereas IL-7Rα expression was unaffected in RORγt-expressing Vγ2+ γδ T cells, Th17 cells, type 3 innate lymphoid cells, and invariant NKT cells. Our results indicate that CNS9 is a RORΕ-dependent, Vγ4+ γδ T cell-specific IL-7Rα enhancer that plays a critical role in adipose tissue homeostasis via regulatory T cells, suggesting that the evolutionarily conserved RORΕ in IL-7Rα intron 2 may influence the incidence of type 2 diabetes.


Asunto(s)
Elementos de Facilitación Genéticos , Intrones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores de Antígenos de Linfocitos T gamma-delta , Animales , Ratones , Intrones/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Elementos de Facilitación Genéticos/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Glucosa/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Ratones Endogámicos C57BL , Células Th17/inmunología , Interleucina-17/metabolismo , Interleucina-17/genética , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología
7.
Proc Natl Acad Sci U S A ; 120(36): e2215941120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639581

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are critical for the immune response against parasite infection and tissue homeostasis and involved in the pathogenesis of allergy and inflammatory diseases. Although multiple molecules positively regulating ILC2 development and activation have been extensively investigated, the factors limiting their population size and response remain poorly studied. Here, we found that CD45, a membrane-bound tyrosine phosphatase essential for T cell development, negatively regulated ILC2s in a cell-intrinsic manner. ILC2s in CD45-deficient mice exhibited enhanced proliferation and maturation in the bone marrow and hyperactivated phenotypes in the lung with high glycolytic capacity. Furthermore, CD45 signaling suppressed the type 2 inflammatory response by lung ILC2s and alleviated airway inflammation and pulmonary fibrosis. Finally, the interaction with galectin-9 influenced CD45 signaling in ILC2s. These results demonstrate that CD45 is a cell-intrinsic negative regulator of ILC2s and prevents lung inflammation and fibrosis via ILC2s.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/prevención & control , Inmunidad Innata , Linfocitos , Inflamación , Transducción de Señal
8.
Int Immunol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38835285

RESUMEN

An age-dependent increase in IFN-γ expression by intestinal intraepithelial lymphocytes (IELs) contributes to the acquisition of resistance to infection by pathogens. However, how IELs acquire the ability to produce IFN-γ remains to be elucidated. Here, we report that IELs in the small intestine acquire the ability to rapidly produce IFN-γ at two distinct life stages. TCRαß+ IELs (αßIELs) started producing IFN-γ at 4 weeks of age, within 1 week after weaning. In contrast, TCRγδ+ IELs (γδIELs) started producing IFN-γ at 7 weeks of age. In mice lacking Eγ4, an enhancer of the TCRγ locus (Eγ4-/- mice), Thy-1+ Vγ5+ γδIELs, a major subpopulation of γδIELs, were specifically reduced and their ability to produce IFN-γ was severely impaired, whereas Vγ2+ γδIELs normally produced IFN-γ. In Eγ4-/- mice, TCR expression levels were reduced in Vγ5+ γδIEL precursors in the thymus but unchanged in the Vγ5+ IELs. Nevertheless, TCR responsiveness in Vγ5+ γδIELs was impaired in Eγ4-/- mice, suggesting that the TCR signal received in the thymus may determine TCR responsiveness and the ability to produce IFN-γ in the gut. These results suggest that αßIELs and γδIELs start producing IFN-γ at different life stages and that the ability of Vγ5+ γδIELs to produce IFN-γ in the gut may be predetermined by TCR signaling in IEL precursors in the thymus.

9.
Immunity ; 44(6): 1434-43, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27317262

RESUMEN

Sepsis is a host inflammatory response to severe infection associated with high mortality that is caused by lymphopenia-associated immunodeficiency. However, it is unknown how lymphopenia persists after the accelerated lymphocyte apoptosis subsides. Here we show that sepsis rapidly ablated osteoblasts, which reduced the number of common lymphoid progenitors (CLPs). Osteoblast ablation or inducible deletion of interleukin-7 (IL-7) in osteoblasts recapitulated the lymphopenic phenotype together with a lower CLP number without affecting hematopoietic stem cells (HSCs). Pharmacological activation of osteoblasts improved sepsis-induced lymphopenia. This study demonstrates a reciprocal interaction between the immune and bone systems, in which acute inflammation induces a defect in bone cells resulting in lymphopenia-associated immunodeficiency, indicating that bone cells comprise a therapeutic target in certain life-threatening immune reactions.


Asunto(s)
Linfocitos B/fisiología , Síndromes de Inmunodeficiencia/inmunología , Interleucina-7/metabolismo , Células Progenitoras Linfoides/fisiología , Osteoblastos/fisiología , Sepsis/inmunología , Linfocitos T/fisiología , Animales , Células Cultivadas , Citocinas/metabolismo , Interleucina-7/genética , Depleción Linfocítica , Linfopenia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Immunity ; 45(6): 1219-1231, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27913094

RESUMEN

Hematopoietic stem cells (HSCs) self-renew in bone marrow niches formed by mesenchymal progenitors and endothelial cells expressing the chemokine CXCL12, but whether a separate niche instructs multipotent progenitor (MPP) differentiation remains unclear. We show that MPPs resided in HSC niches, where they encountered lineage-instructive differentiation signals. Conditional deletion of the chemokine receptor CXCR4 in MPPs reduced differentiation into common lymphoid progenitors (CLPs), which decreased lymphopoiesis. CXCR4 was required for CLP positioning near Interleukin-7+ (IL-7) cells and for optimal IL-7 receptor signaling. IL-7+ cells expressed CXCL12 and the cytokine SCF, were mesenchymal progenitors capable of differentiation into osteoblasts and adipocytes, and comprised a minor subset of sinusoidal endothelial cells. Conditional Il7 deletion in mesenchymal progenitors reduced B-lineage committed CLPs, while conditional Cxcl12 or Scf deletion from IL-7+ cells reduced HSC and MPP numbers. Thus, HSC maintenance and multilineage differentiation are distinct cell lineage decisions that are both controlled by HSC niches.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Multipotentes/citología , Nicho de Células Madre/fisiología , Animales , Linaje de la Célula/fisiología , Separación Celular , Quimiocina CXCL2/metabolismo , Citometría de Flujo , Interleucina-7/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36415926

RESUMEN

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Asunto(s)
Roturas del ADN de Doble Cadena , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucocorticoides/farmacología , Reparación del ADN , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/genética
12.
Int Immunol ; 35(3): 147-155, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36480702

RESUMEN

Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Ratones , Regulación de la Expresión Génica , Interferón gamma/metabolismo , Células Asesinas Naturales , Receptores de Ácido Retinoico/metabolismo
13.
Int Immunol ; 35(11): 513-530, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37493250

RESUMEN

Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.


Asunto(s)
Inmunidad Innata , Interleucina-7 , Ratones , Animales , Células Endoteliales/metabolismo , Papaína , Linfocitos , Pulmón , Inmunidad Adaptativa , Inflamación , Citocinas/metabolismo , Interleucina-33
14.
J Immunol ; 209(6): 1083-1094, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35977797

RESUMEN

Asthma is more common in females than males after adolescence. However, the mechanism of the sex bias in the prevalence of asthma remains unknown. To test whether sex steroid hormones have some roles in T cells during development of asthma, we analyzed airway inflammation in T cell-specific androgen receptor (AR)- and estrogen receptor (ER)-deficient mice. T cell-specific AR-deficient male mice developed severer house dust mite-induced allergic airway inflammation than did control male mice, whereas T cell-specific ERα- and ERß-deficient female mice exhibited a similar degree of inflammation as for control female mice. Furthermore, administration of dihydrotestosterone reduced cytokine production of Th2 cells from control, but not AR-deficient, naive T cells. Transfer of OT-II transgenic AR-deficient Th2 cells into wild-type mice induced severer allergic airway inflammation by OVA than transfer of control Th2 cells. Gene expression profiling suggested that the expression of genes related with cell cycle and Th2 differentiation was elevated in AR-deficient Th2 cells, whereas expression of dual specificity phosphatase (DUSP)-2, a negative regulator of p38, was downregulated. In addition, a chromatin immunoprecipitation assay suggested that AR bound to an AR motif in the 5' untranslated region of the Dusp2 gene in Th2 cells. Furthermore, the Dusp2 promoter with a wild-type AR motif, but not a mutated motif, was transactivated by dihydrotestosterone in a reporter assay. Finally, forced expression of DUSP-2 by retrovirus vector reduced IL-4 expression in Th2 cells. Thus, these results suggest that androgen signaling suppresses cytokine production of Th2 cells by inducing DUSP-2, explaining, in part, the sex bias of asthma after adolescence.


Asunto(s)
Asma , Hipersensibilidad , Regiones no Traducidas 5' , Andrógenos/metabolismo , Animales , Asma/genética , Asma/metabolismo , Dihidrotestosterona , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/metabolismo , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Femenino , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Células Th17/metabolismo , Células Th2/metabolismo
15.
Adv Exp Med Biol ; 1444: 111-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467976

RESUMEN

Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Células Asesinas Naturales , Inflamación
16.
J Allergy Clin Immunol ; 150(4): 909-919.e8, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35589416

RESUMEN

BACKGROUND: Psoriasis is a common inflammatory skin disease resulting from dysregulation of the IL-23/TH17 immune axis. The prevalence and severity of psoriasis is higher in men than in women, although the underlying reasons for this are unclear. OBJECTIVE: We studied whether estradiol, a female hormone, plays protective roles in imiquimod-induced psoriatic inflammation in mice by regulating neutrophil and macrophage functions. METHODS: Wild-type mice and conditional knockout mice were ovariectomized, supplemented with placebo or estradiol pellets, and an imiquimod-containing cream applied. RESULTS: Mice without endogenous ovarian hormones exhibited exacerbated psoriatic inflammation including increased production of IL-17A and IL-1ß, which was reversed by exogenously added estradiol. The suppressive effect of estradiol on the production of IL-1ß and IL-17A was abolished in mice lacking estrogen receptors in neutrophils and macrophages (Esr1f/fEsr2f/fLysM-Cre+ mice). IL-1ß, which is required for production of IL-17A in the psoriasis model, was mainly produced by neutrophils and inflammatory macrophages. Estradiol suppressed IL-1ß production from neutrophils and macrophages in mice both in vivo and in vitro and from human neutrophils in vitro. CONCLUSION: Our results suggest a novel mechanism for sex-dependent differences in psoriasis clinical phenotypes that may shed new light on the pathology of psoriasis.


Asunto(s)
Interleucina-17 , Psoriasis , Animales , Modelos Animales de Enfermedad , Estradiol/farmacología , Estradiol/uso terapéutico , Imiquimod/efectos adversos , Inflamación/patología , Interleucina-23 , Macrófagos , Ratones , Ratones Noqueados , Neutrófilos , Receptores de Estrógenos , Piel
17.
Curr Top Microbiol Immunol ; 434: 83-101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34850283

RESUMEN

Lymphoid organs consist of immune cells and stromal cells. The stromal cells produce various cytokines that support the development, maintenance, and response of the immune cells. IL-7 and IL-15 are the major cytokines produced by stromal cells and are essential for the development and maintenance of lymphocytes and innate lymphoid cells (ILCs). In addition, IL-7 is indispensable for the organogenesis of lymphoid organs. However, because the amount of these two cytokines is relatively low, it has been difficult to directly detect their expression. Recently, several groups succeeded in establishing IL-7 and IL-15 reporter mouse lines. As expected, IL-7 and IL-15 were detected in mesenchymal stromal cells in the bone marrow and lymph nodes and in epithelial cells in the thymus. Furthermore, IL-7 and IL-15 were differentially expressed in lymphatic endothelial cells and blood endothelial cells, respectively. In addition to their expression, many groups have analyzed the local functions of IL-7 and IL-15 by using cell-type-specific knockout mice. From these experiments, CXCL12-expressing mesenchymal stromal cells were identified as the major niche for early B cell precursors. Single-cell RNA sequencing (scRNA-seq) analysis has revealed different subpopulations of stromal cells in the lymphoid organs, including those that express both IL-7 and IL-15. Future research is still needed to elucidate which stromal cells serve as the niche for the early precursors of ILCs and NK cells in the bone marrow.


Asunto(s)
Interleucina-15 , Interleucina-7 , Animales , Células Endoteliales , Inmunidad Innata , Interleucina-15/genética , Interleucina-7/genética , Células Asesinas Naturales , Ratones
18.
Curr Top Microbiol Immunol ; 434: 103-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34850284

RESUMEN

Lymph nodes (LNs) are secondary lymphoid organs that function as the first line of defense against invasive foreign substances. Within the LNs, different types of immune cells are strategically localized to induce immune responses efficiently. Such a sophisticated tissue structure is a complex of functionally specialized niches, constructed by a variety of fibroblastic stromal cells. Elucidating the characteristics and functions of the niches and stromal cells will facilitate comprehension of the immune response induced in the LNs. Three recent studies offered novel insights into specialized stromal cells. In our discussion of these surprisingly diverse stromal cells, we will integrate information from these studies to improve knowledge about the structure and niches of LN.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Inmunidad
19.
J Immunol ; 204(10): 2671-2684, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32238459

RESUMEN

TCR signaling is required for homeostasis of naive αß T cells. However, whether such a signal is necessary for γδ T cell homeostasis in the periphery remains unknown. In this study, we present evidence that a portion of Vγ2+ γδ T cells, one of the major γδ T cell subsets in the secondary lymphoid organs, requires TCR signaling for homeostasis. To attenuate γδTCR signals, we generated mice lacking Eγ4 (Eγ4-/-), an enhancer located at the 3'-most end of the TCRγ locus. Overall, we found that in thymus, Eγ4 loss altered V-J rearrangement, chromatin accessibility, and transcription of the TCRγ locus in a distance-dependent manner. Vγ2+ γδ T cells in Eγ4-/- mice developed normally both fetal and adult mouse thymi but were relatively reduced in number in spleen and lymph nodes. Although Vγ2 TCR transcription decreased in all subpopulations of Eγ4-/- mice, the number of Vγ2+ γδ T cells decreased and TCR signaling was attenuated only in the innate-like CD27+CD45RBhigh subpopulation in peripheral lymphoid organs. Consistently, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice transferred into Rag2-deficient mice were not efficiently recovered, suggesting that continuous TCR signaling is required for their homeostasis. Finally, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice showed impaired TCR-induced activation and antitumor responses. These results suggest that normal homeostasis of innate-like CD27+CD45RBhigh Vγ2+ γδ T cells in peripheral lymphoid organs requires TCR signaling.


Asunto(s)
Centro Germinal/inmunología , Ganglios Linfáticos/inmunología , Tejido Linfoide/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Células Cultivadas , Elementos de Facilitación Genéticos/genética , Homeostasis , Inmunidad Innata , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tolerancia Periférica , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Transducción de Señal , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
20.
J Immunol ; 204(4): 844-857, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31924648

RESUMEN

T cell development and homeostasis requires IL-7R α-chain (IL-7Rα) signaling. Tyrosine Y449 of the IL-7Rα is essential to activate STAT5 and PI3K, whereas PI3K recruitment requires IL-7Rα methionine M452. How IL-7Rα activates and regulates both signaling pathways differentially remains unclear. To characterize differential signaling, we established two lines of IL-7Rα mutant mice: IL-7R-Y449F mice and IL-7R-M452L mice. IL-7R-Y449F mice showed decreased PI3K and STAT5 signals, whereas IL-7R-M452L mice showed decreased PI3K but significantly increased STAT5 signaling, owing to a competition between PI3K and STAT5 signaling through Y449 of IL-7Rα. The number of T, B, and mature innate lymphoid cells were markedly reduced in IL-7R-Y449F mice, whereas IL-7R-M452L mice showed impaired early T cell development and memory precursor effector T cell maintenance with the downregulation of transcription factor T cell factor-1. Peripheral T cell numbers increased in IL-7R-M452L mice with enhanced survival and homeostatic proliferation. Furthermore, although wild type and IL-7R-Y449F mice showed comparable Th1/Th2 differentiation, IL-7R-M452L mice exhibited impaired Th17 differentiation. We conclude that PI3K competes with STAT5 under IL-7Rα and maintains an appropriate signal balance for modulating T cell development and homeostasis. To our knowledge, this study provides a new insight into complex regulation of IL-7Rα signaling, which supports immune development and responses.


Asunto(s)
Homeostasis/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Receptores de Interleucina-7/inmunología , Factor de Transcripción STAT5/inmunología , Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA