Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 16(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37374434

RESUMEN

The proposed study combines sprayed glass fiber-reinforced mortar and basalt textile-reinforcement to harness the favorable properties of each component to obtain a composite material that can be used for strengthening of existing structures. This includes crack resistance and a bridging effect of glass fiber-reinforced mortar and the strength provided by the basalt mesh. In terms of weight, mortars containing two different glass fiber ratios (3.5% and 5%) were designed, and tensile and flexural tests were conducted on these mortar configurations. Moreover, the tensile and flexural tests were performed on the composite configurations containing one, two, and three layers of basalt fiber textile reinforcement in addition to 3.5% glass fiber. Maximum stress, cracked and uncracked modulus of elasticity, failure mode, and average tensile stress curve results were compared to determine each system's mechanical parameters. When the glass fiber content increased from 3.5% to 5%, the composite system without basalt textiles' tensile behavior slightly improved. The increase in tensile strength of composite configurations with one, two, and three layers of basalt textile reinforcement was 28%, 21%, and 49%, respectively. As the number of basalt textile reinforcements increased, the slope of the hardening part of the curve after cracking clearly increased. Parallel to the tensile tests, four-point bending tests showed that the composite's flexural strength and deformation capacities increase as the number of basalt textile reinforcement layers increase from one to two.

2.
Bull Earthq Eng ; 20(14): 7793-7818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210980

RESUMEN

The October 30, 2020 Earthquake caused unexpectedly significant damage in Izmir considering its distance to the city. This paper evaluates the recorded ground motions, summarizes the performance of structures affected from the earthquake with emphasis on the reasons of damage. A detailed damage assessment was carried out by the Earthquake Engineering Research Center of Middle East Technical University to compile data on the damage of RC and masonry buildings. It was observed that majority of the damage was concentrated in the Bayrakli district due to its peculiar soil properties where many 7-10 story mid-rise RC buildings suffered heavy damage and collapse. The level of amplified ground motions combined with deficiencies of apparently non-code compliant buildings exacerbated the damage. The main reasons of damage were mainly attributed to the presence of soft stories, lack of proper detailing, poor construction quality, presence of heavy overhangs, and hence significant lack of code-compliance in essence. The influence of infill walls on seismic performance of deficient and inadequate buildings was clearly seen in this earthquake. This paper also discusses seismic code requirements in effect and their influence on the observed building performance. The recorded ground motions were compared with the code spectra to evaluate the performance of the buildings. The code response spectra were found to be well above the recorded ground motion spectra at the sites where significant damage was observed.

3.
Disasters ; 34(1): 71-92, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19624701

RESUMEN

Istanbul is one of the world's cities most vulnerable to seismic events. According to seismologists, the probability of a severe earthquake in the next 30 years is approximately 40 per cent. Following an outline of the seismicity of this vital Turkish city and a summary of current seismic risks and mitigation studies, this paper presents the results of a survey conducted in two districts of Istanbul, Avcilar and Bakirkoy. The survey comprised some 60 questions on the seismic risk perceptions of individuals and requested basic personal data, such as on age, education level, employment type, financial income, and gender. Despite various differences among the survey population, such as academic background and level of financial income, responses were surprisingly similar, especially in terms of having no plan for a safer house. The data may help those planning mitigation programmes and public awareness campaigns on preparedness and particularly mitigation in highly vulnerable regions.


Asunto(s)
Actitud , Concienciación , Terremotos , Adolescente , Adulto , Anciano , Recolección de Datos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Turquía , Adulto Joven
4.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266106

RESUMEN

The behaviour of reinforced concrete frames with masonry wall infills is influenced a lot by the stiffness and strength difference between the frame and the infill, causing early detrimental damage to the infill or to the critical concrete columns. The paper reports the results from shake table seismic tests on a full-scale reinforced concrete (RC) frame building with modified hollow clay block (orthoblock brick) infill walls, within INMASPOL SERA Horizon 2020 project. The building received innovative resilient protection using Polyurethane Flexible Joints (PUFJs) made of polyurethane resin (PU), applied at the frame-infill interface in different schemes. Further, PUs were used for bonding of glass fibre grids to the weak masonry substrate to form Fibre Reinforced Polyurethanes (FRPUs) as an emergency repair intervention. The test results showed enhancement in the in-plane and out-of-plane infill performance under seismic excitations. The results confirmed remarkable delay of significant infill damages at very high RC frame inter-story drifts as a consequence of the use of PUFJs. Further, the PUFJ protection enabled the resilient repair of the infill even after very high inter-story drift of the structure up to 3.7%. The applied glass FRPU system efficiently protected the damaged infills against collapse under out-of-plane excitation while they restored large part of their in-plane stiffness.

5.
Polymers (Basel) ; 10(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30966174

RESUMEN

The aim of this paper is to identify the axial behavior characteristics of FRP (fiber reinforced polymer) confined circular HPFRCC (high performance fiber reinforced cementitious composite) members under compression. The test program comprised of 24 circular specimens with an average compressive strength of 102.7 MPa, including 21 carbon FRP (CFRP) confined (2, 4, 6, 8 and 10 layers) and three unconfined specimens. Transverse confinement generated by external FRP sheets resulted with a remarkable enhancement in axial strength and deformability, which is extremely important to resist seismic actions. The higher was the thickness of FRP confinement, the larger was the ultimate strain (εcu) and peak compressive strength (f'cc) of externally confined HPFRCC. When compared to FRP confined conventional concrete, different axial and lateral deformation characteristics were seen in FRP jacketed HPFRCC members. Higher strength and steel fiber presence in HPFRCC limited the lateral deformations which resulted with reduced strain efficiency with respect to conventional concrete. After presenting the experimental work, performance and accuracy of several available models proposed for predicting the axial behavior of FRP jacketed concrete were evaluated in a comparative manner.

6.
Polymers (Basel) ; 8(9)2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-30974603

RESUMEN

Although many theoretical and experimental studies are available on external confinement of columns using fiber-reinforced polymer (FRP) jackets, as well as numerous models proposed for the axial stress-axial strain relation of concrete confined with FRP jackets, they have not been validated with a sufficient amount and variety of experimental data obtained through full-scale tests of reinforced concrete (RC) columns with different geometrical and mechanical characteristics. Particularly, no systematical experimental data have been presented on full-scale rectangular substandard RC columns subjected to reversed cyclic lateral loads along either their strong or weak axes. In this study, firstly, test results of five full-scale rectangular substandard RC columns with a cross-sectional aspect ratio of two (300 mm × 600 mm) are briefly summarized. The columns were tested under constant axial load and reversed cyclic lateral loads along their strong or weak axes before and after retrofitting with external FRP jackets. In the second stage, inelastic lateral force-displacement relationships of the columns are obtained analytically, making use of the plastic hinge assumption and different FRP confinement models available in the literature. Finally, the analytical findings are compared with the test results for both strong and weak directions of the columns. Comparisons showed that use of different models for the stress-strain relationship of FRP-confined concrete can yield significantly non-conservative or too conservative retrofit designs, particularly in terms of deformation capacity.

7.
Polymers (Basel) ; 8(6)2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30979307

RESUMEN

Composite reinforcing bars (rebars) that are used in concrete members with high performance (strength and durability) properties could have beneficial effects on the behavior of these members. This is especially vital when a building is constructed in an aggressive environment, for instance a corrosive environment. Although tension capacity/weight (or volume) ratios in composite rebars (carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), etc.) are very high when compared to steel rebars, major weaknesses in concrete members reinforced with these composite rebars may be the potential consequences of relatively poor bonding capacity. This may even be more crucial when the member is subjected to cyclic loading. Although monotonic bond tests are available in the literature, only limited experimental studies exist on bond characteristics under cyclic loading conditions. In order to fill this gap and propose preliminary design recommendations, 10 specimens of 10-mm-diameter ribbed CFRP rebars embedded in specially designed high strength concrete (f'c = 70 MPa) blocks were subjected to monotonic and cyclic pullout tests. The experimental results showed that cyclically loaded CFRP rebars had less bond strength than those companion specimens loaded monotonically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA