Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 143(23): 2401-2413, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38427753

RESUMEN

ABSTRACT: It remains elusive how driver mutations, including those detected in circulating tumor DNA (ctDNA), affect prognosis in relapsed/refractory multiple myeloma (RRMM). Here, we performed targeted-capture sequencing using bone marrow plasma cells (BMPCs) and ctDNA of 261 RRMM cases uniformly treated with ixazomib, lenalidomide, and dexamethasone in a multicenter, prospective, observational study. We detected 24 and 47 recurrently mutated genes in BMPC and ctDNA, respectively. In addition to clonal hematopoiesis-associated mutations, varying proportion of driver mutations, particularly TP53 mutations (59.2% of mutated cases), were present in only ctDNA, suggesting their subclonal origin. In univariable analyses, ctDNA mutations of KRAS, TP53, DIS3, BRAF, NRAS, and ATM were associated with worse progression-free survival (PFS). BMPC mutations of TP53 and KRAS were associated with inferior PFS, whereas KRAS mutations were prognostically relevant only when detected in both BMPC and ctDNA. A total number of ctDNA mutations in the 6 relevant genes was a strong prognostic predictor (2-year PFS rates: 57.3%, 22.7%, and 0% for 0, 1, and ≥2 mutations, respectively) and independent of clinical factors and plasma DNA concentration. Using the number of ctDNA mutations, plasma DNA concentration, and clinical factors, we developed a prognostic index, classifying patients into 3 categories with 2-year PFS rates of 57.9%, 28.6%, and 0%. Serial analysis of ctDNA mutations in 94 cases revealed that TP53 and KRAS mutations frequently emerge after therapy. Thus, we clarify the genetic characteristics and clonal architecture of ctDNA mutations and demonstrate their superiority over BMPC mutations for prognostic prediction in RRMM. This study is a part of the C16042 study, which is registered at www.clinicaltrials.gov as #NCT03433001.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos de Boro , ADN Tumoral Circulante , Dexametasona , Glicina , Lenalidomida , Mieloma Múltiple , Humanos , Lenalidomida/administración & dosificación , Lenalidomida/uso terapéutico , Femenino , Glicina/análogos & derivados , Glicina/administración & dosificación , Glicina/uso terapéutico , Masculino , Anciano , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Pronóstico , Dexametasona/administración & dosificación , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Compuestos de Boro/uso terapéutico , Compuestos de Boro/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anciano de 80 o más Años , Mutación , Adulto , Estudios Prospectivos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Biomarcadores de Tumor/genética
2.
Org Biomol Chem ; 22(17): 3510-3517, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619422

RESUMEN

Post-synthetic conversion of the trifluoromethyl group to a heteroaryl group at the C5 position of the pyrimidine base in DNA oligonucleotides was achieved. Specifically, the oligonucleotides containing 5-trifluoromethylpyrimidine bases were treated with o-phenylenediamines and o-aminothiophenols as nucleophiles to afford the corresponding 5-(benzimidazol-2-yl)- and 5-(benzothiazol-2-yl)-pyrimidine-modified bases. Furthermore, evaluation of the fluorescence properties of the obtained oligonucleotides revealed that among them the oligonucleotide containing 5-(5-methylbenzimidazol-2-yl)cytosine exhibited the highest fluorescence intensity. These results indicated that post-synthetic trifluoromethyl conversion, which is practical and operationally simple, is a powerful tool for exploring functional oligonucleotides.


Asunto(s)
Colorantes Fluorescentes , Oligonucleótidos , Pirimidinas , Pirimidinas/química , Pirimidinas/síntesis química , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular
3.
Case Rep Gastroenterol ; 18(1): 214-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628808

RESUMEN

Introduction: Portal annular pancreas (PAP) is a congenital anomaly resulting from aberrant fusion of the ventral and dorsal pancreatic buds around the portal vein (PV). PAP was classified into three types by Joseph et al., based on the location of the main pancreatic duct around the PV. The presence of PAP is important for the surgical procedure because it is associated with the postoperative pancreatic fistula. There are no standardized surgical procedures of resection and reconstruction for PAP. Case Presentation: We report 2 cases of subtotal stomach-preserving pancreatoduodenectomy in patients with PAP. One case of PAP was discovered coincidentally intraoperatively, and the other case was diagnosed before surgery. The first case was an 84-year-old male patient who underwent surgery for distal bile duct cancer. PAP was noticed intraoperatively when the uncinate process of the pancreas was detached from behind the PV. The second case was an 84-year-old female patient who also underwent surgery for distal bile duct cancer. We recognized PAP from preoperative computed tomography images. In both cases, the ductal anatomy was consistent with type IIIA PAP, and the dorsal pancreas was resected using a stapling device. During the postoperative period, there was no clinically relevant postoperative pancreatic fistula. Conclusion: PAP is rarely encountered intraoperatively; however, it is important to recognize it before surgery and take it into consideration when deciding upon the procedures for resection and reconstruction.

4.
ACS Omega ; 9(32): 34692-34699, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157149

RESUMEN

Perovskite nanocrystals (NCs) with long alkyl ligands cannot easily form high-quality composite films owing to their poor dispersibility in π-conjugated small molecules and polymer host materials. In this study, we demonstrated that the aromatic ligand exchange of mixed-cation FA0.9Cs0.1PbBr3 NCs using 2,2-diphenylethylamine (DPEA) can not only enable the fabrication of high-efficiency light-emitting diodes (LEDs) but also allows dispersibility in host materials. The DPEA-NC film exhibited a pure green wavelength of 530 nm and a full width at half-maximum of 20.9 nm with a photoluminescence quantum yield of 90.9%. A DPEA-NC LED achieved a luminance of 39,700 cd/m2 and an external quantum efficiency of 18.6% even in a thick NC film. Interestingly, the DPEA-NCs formed a composite film with small-molecule tris(4-carbazoyl-9-ylphenyl)amine. The operational stability of this composite LED was eight times higher than that of the DPEA-NC LED owing to enhanced hole-electron charge balance and the suppression of perovskite NC degradation. Therefore, the aromatic DPEA ligand exchange of perovskite NCs is an effective way to improve their electrical properties and operational device stabilities.

5.
Cancer Discov ; 14(5): 786-803, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38276885

RESUMEN

Using 48,627 samples from the Center for Cancer Genomics and Advanced Therapeutics (C-CAT), we present a pan-cancer landscape of driver alterations and their clinical actionability in Japanese patients. Comparison with White patients in Genomics Evidence Neoplasia Information Exchange (GENIE) demonstrates high TP53 mutation frequencies in Asian patients across multiple cancer types. Integration of C-CAT, GENIE, and The Cancer Genome Atlas data reveals many cooccurring and mutually exclusive relationships between driver mutations. At pathway level, mutations in epigenetic regulators frequently cooccur with PI3K pathway molecules. Furthermore, we found significant cooccurring mutations within the epigenetic pathway. Accumulation of mutations in epigenetic regulators causes increased proliferation-related transcriptomic signatures. Loss-of-function of many epigenetic drivers inhibits cell proliferation in their wild-type cell lines, but this effect is attenuated in those harboring mutations of not only the same but also different epigenetic drivers. Our analyses dissect various genetic properties and provide valuable resources for precision medicine in cancer. SIGNIFICANCE: We present a genetic landscape of 26 principal cancer types/subtypes, including Asian-prevalent ones, in Japanese patients. Multicohort data integration unveils numerous cooccurring and exclusive relationships between driver mutations, identifying cooccurrence of multiple mutations in epigenetic regulators, which coordinately cause transcriptional and phenotypic changes. These findings provide insights into epigenetic regulator-driven oncogenesis. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Bases de Datos Genéticas , Genómica , Mutación , Neoplasias , Humanos , Neoplasias/genética , Genómica/métodos , Japón , Epigénesis Genética , Pueblo Asiatico/genética , Pueblos del Este de Asia
6.
Sci Rep ; 14(1): 3244, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332164

RESUMEN

Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic ß-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the ß-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Lanosterol , Fenantrenos , Animales , Ratones , Ácidos y Sales Biliares , Diabetes Mellitus Experimental/metabolismo , Proteínas de Unión al GTP/metabolismo , Hiperglucemia/tratamiento farmacológico , Insulina/metabolismo , Secreción de Insulina , Lanosterol/análogos & derivados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Cancer Res ; 84(13): 2181-2201, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38657099

RESUMEN

Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm with male dominance and a poor prognosis. A better understanding of the genetic alterations and their functional roles in ENKTCL could help improve patient stratification and treatments. In this study, we performed a comprehensive genetic analysis of 178 ENKTCL cases to delineate the landscape of mutations, copy number alterations (CNA), and structural variations, identifying 34 driver genes including six previously unappreciated ones, namely, HLA-B, HLA-C, ROBO1, CD58, POT1, and MAP2K1. Among them, CD274 (24%) was the most frequently altered, followed by TP53 (20%), CDKN2A (19%), ARID1A (15%), HLA-A (15%), BCOR (14%), and MSN (14%). Chromosome X losses were the most common arm-level CNAs in females (∼40%), and alterations of four X-linked driver genes (MSN, BCOR, DDX3X, and KDM6A) were more frequent in males and females harboring chromosome X losses. Among X-linked drivers, MSN was the most recurrently altered, and its expression was lost in approximately one-third of cases using immunohistochemical analysis. Functional studies of human cell lines showed that MSN disruption promoted cell proliferation and NF-κB activation. Moreover, MSN inactivation increased sensitivity to NF-κB inhibition in vitro and in vivo. In addition, recurrent deletions were observed at the origin of replication in the EBV genome (6%). Finally, by integrating the 34 drivers and 19 significant arm-level CNAs, nonnegative matrix factorization and consensus clustering identified two molecular groups with different genetic features and prognoses irrespective of clinical prognostic factors. Together, these findings could help improve diagnostic and therapeutic strategies in ENKTCL. Significance: Integrative genetic analyses and functional studies in extranodal NK/T-cell lymphoma identify frequent disruptions of X-linked drivers, reveal prognostic molecular subgroups, and uncover recurrent MSN alterations that confer sensitivity to NF-κB inhibition.


Asunto(s)
Cromosomas Humanos X , Linfoma Extranodal de Células NK-T , Humanos , Masculino , Femenino , Cromosomas Humanos X/genética , Linfoma Extranodal de Células NK-T/genética , Linfoma Extranodal de Células NK-T/virología , Linfoma Extranodal de Células NK-T/patología , Linfoma Extranodal de Células NK-T/metabolismo , Variaciones en el Número de Copia de ADN , Mutación , Persona de Mediana Edad , Animales , Adulto , Ratones , Pronóstico , Anciano , Perfilación de la Expresión Génica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Adulto Joven , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA