Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35898077

RESUMEN

With the Internet of Things (IoT), mobile healthcare applications can now offer a variety of dimensionalities and online services. Disease Prediction Systems (DPS) increase the speed and accuracy of diagnosis, improving the quality of healthcare services. However, privacy is garnering an increasing amount of attention these days, especially concerning personal healthcare data, which are sensitive. There are a variety of prevailing privacy preservation techniques for disease prediction that are rendered. Nonetheless, there is a chance of medical users being affected by numerous disparate diseases. Therefore, it is vital to consider multi-label instances, which might decrease the accuracy. Thus, this paper proposes an efficient privacy-preserving (PP) scheme for patient healthcare data collected from IoT devices aimed at disease prediction in the modern Health Care System (HCS). The proposed system utilizes the Log of Round value-based Elliptic Curve Cryptography (LR-ECC) to enhance the security level during data transfer after the initial authentication phase. The authorized healthcare staff can securely download the patient data on the hospital side. Utilizing the Herding Genetic Algorithm-based Deep Learning Neural Network (EHGA-DLNN) can test these data with the trained system to predict the diseases. The experimental results demonstrate that the proposed approach improves prediction accuracy, privacy, and security compared to the existing methods.


Asunto(s)
Internet de las Cosas , Privacidad , Algoritmos , Seguridad Computacional , Atención a la Salud , Humanos
2.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161820

RESUMEN

The functionality of the Internet is continually changing from the Internet of Computers (IoC) to the "Internet of Things (IoT)". Most connected systems, called Cyber-Physical Systems (CPS), are formed from the integration of numerous features such as humans and the physical environment, smart objects, and embedded devices and infrastructure. There are a few critical problems, such as security risks and ethical issues that could affect the IoT and CPS. When every piece of data and device is connected and obtainable on the network, hackers can obtain it and utilise it for different scams. In medical healthcare IoT-CPS, everyday medical and physical data of a patient may be gathered through wearable sensors. This paper proposes an AI-enabled IoT-CPS which doctors can utilise to discover diseases in patients based on AI. AI was created to find a few disorders such as Diabetes, Heart disease and Gait disturbances. Each disease has various symptoms among patients or elderly. Dataset is retrieved from the Kaggle repository to execute AI-enabled IoT-CPS technology. For the classification, AI-enabled IoT-CPS Algorithm is used to discover diseases. The experimental results demonstrate that compared with existing algorithms, the proposed AI-enabled IoT-CPS algorithm detects patient diseases and fall events in elderly more efficiently in terms of Accuracy, Precision, Recall and F-measure.


Asunto(s)
Internet de las Cosas , Dispositivos Electrónicos Vestibles , Anciano , Inteligencia Artificial , Atención a la Salud , Humanos , Internet , Tecnología
3.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35890796

RESUMEN

The Internet of Vehicles (IoV) is a new paradigm for vehicular networks. Using diverse access methods, IoV enables vehicles to connect with their surroundings. However, without data security, IoV settings might be hazardous. Because of the IoV's openness and self-organization, they are prone to malevolent attack. To overcome this problem, this paper proposes a revolutionary blockchain-enabled game theory-based authentication mechanism for securing IoVs. Here, a three layer multi-trusted authorization solution is provided in which authentication of vehicles can be performed from initial entry to movement into different trusted authorities' areas without any delay by the use of Physical Unclonable Functions (PUFs) in the beginning and later through duel gaming, and a dynamic Proof-of-Work (dPoW) consensus mechanism. Formal and informal security analyses justify the framework's credibility in more depth with mathematical proofs. A rigorous comparative study demonstrates that the suggested framework achieves greater security and functionality characteristics and provides lower transaction and computation overhead than many of the available solutions so far. However, these solutions never considered the prime concerns of physical cloning and side-channel attacks. However, the framework in this paper is capable of handling them along with all the other security attacks the previous work can handle. Finally, the suggested framework has been subjected to a blockchain implementation to demonstrate its efficacy with duel gaming to achieve authentication in addition to its capability of using lower burdened blockchain at the physical layer, which current blockchain-based authentication models for IoVs do not support.


Asunto(s)
Cadena de Bloques , Seguridad Computacional , Teoría del Juego , Internet
4.
Multimed Syst ; 28(4): 1223-1237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33814730

RESUMEN

Coronavirus is a fatal disease that affects mammals and birds. Usually, this virus spreads in humans through aerial precipitation of any fluid secreted from the infected entity's body part. This type of virus is fatal than other unpremeditated viruses. Meanwhile, another class of coronavirus was developed in December 2019, named Novel Coronavirus (2019-nCoV), first seen in Wuhan, China. From January 23, 2020, the number of affected individuals from this virus rapidly increased in Wuhan and other countries. This research proposes a system for classifying and analyzing the predictions obtained from symptoms of this virus. The proposed system aims to determine those attributes that help in the early detection of Coronavirus Disease (COVID-19) using the Adaptive Neuro-Fuzzy Inference System (ANFIS). This work computes the accuracy of different machine learning classifiers and selects the best classifier for COVID-19 detection based on comparative analysis. ANFIS is used to model and control ill-defined and uncertain systems to predict this globally spread disease's risk factor. COVID-19 dataset is classified using Support Vector Machine (SVM) because it achieved the highest accuracy of 100% among all classifiers. Furthermore, the ANFIS model is implemented on this classified dataset, which results in an 80% risk prediction for COVID-19.

5.
Comput Electr Eng ; 101: 107967, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35474674

RESUMEN

'Fake news' refers to the misinformation presented about issues or events, such as COVID-19. Meanwhile, social media giants claimed to take COVID-19 related misinformation seriously, however, they have been ineffectual. This research uses Information Fusion to obtain real news data from News Broadcasting, Health, and Government websites, while fake news data are collected from social media sites. 39 features were created from multimedia texts and used to detect fake news regarding COVID-19 using state-of-the-art deep learning models. Our model's fake news feature extraction improved accuracy from 59.20% to 86.12%. Overall high precision is 85% using the Recurrent Neural Network (RNN) model; our best recall and F1-Measure for fake news were 83% using the Gated Recurrent Units (GRU) model. Similarly, precision, recall, and F1-Measure for real news are 88%, 90%, and 88% using the GRU, RNN, and Long short-term memory (LSTM) model, respectively. Our model outperformed standard machine learning algorithms.

6.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365937

RESUMEN

The pursuit to spot abnormal behaviors in and out of a network system is what led to a system known as intrusion detection systems for soft computing besides many researchers have applied machine learning around this area. Obviously, a single classifier alone in the classifications seems impossible to control network intruders. This limitation is what led us to perform dimensionality reduction by means of correlation-based feature selection approach (CFS approach) in addition to a refined ensemble model. The paper aims to improve the Intrusion Detection System (IDS) by proposing a CFS + Ensemble Classifiers (Bagging and Adaboost) which has high accuracy, high packet detection rate, and low false alarm rate. Machine Learning Ensemble Models with base classifiers (J48, Random Forest, and Reptree) were built. Binary classification, as well as Multiclass classification for KDD99 and NSLKDD datasets, was done while all the attacks were named as an anomaly and normal traffic. Class labels consisted of five major attacks, namely Denial of Service (DoS), Probe, User-to-Root (U2R), Root to Local attacks (R2L), and Normal class attacks. Results from the experiment showed that our proposed model produces 0 false alarm rate (FAR) and 99.90% detection rate (DR) for the KDD99 dataset, and 0.5% FAR and 98.60% DR for NSLKDD dataset when working with 6 and 13 selected features.

7.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295298

RESUMEN

Recognizing human physical activities from streaming smartphone sensor readings is essential for the successful realization of a smart environment. Physical activity recognition is one of the active research topics to provide users the adaptive services using smart devices. Existing physical activity recognition methods lack in providing fast and accurate recognition of activities. This paper proposes an approach to recognize physical activities using only2-axes of the smartphone accelerometer sensor. It also investigates the effectiveness and contribution of each axis of the accelerometer in the recognition of physical activities. To implement our approach, data of daily life activities are collected labeled using the accelerometer from 12 participants. Furthermore, three machine learning classifiers are implemented to train the model on the collected dataset and in predicting the activities. Our proposed approach provides more promising results compared to the existing techniques and presents a strong rationale behind the effectiveness and contribution of each axis of an accelerometer for activity recognition. To ensure the reliability of the model, we evaluate the proposed approach and observations on standard publicly available dataset WISDM also and provide a comparative analysis with state-of-the-art studies. The proposed approach achieved 93% weighted accuracy with Multilayer Perceptron (MLP) classifier, which is almost 13% higher than the existing methods.


Asunto(s)
Acelerometría/métodos , Actividad Motora , Acelerometría/instrumentación , Humanos , Modelos Logísticos , Aprendizaje Automático , Carrera , Sedestación , Teléfono Inteligente , Caminata
8.
Sensors (Basel) ; 20(9)2020 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-32375240

RESUMEN

In recent times, security and privacy at the physical (PHY) layer has been a major issue of several communication technologies which comprise the internet of things (IoT) and mostly, the emerging fifth-generation (5G) cellular network. The most real-world PHY security challenge stems from the fact that the passive eavesdropper's information is unavailable to the genuine source and destination (transmitter/receiver) nodes in the network. Without this information, it is difficult to optimize the broadcasting parameters. Therefore, in this research, we propose an efficient sequential convex estimation optimization (SCEO) algorithm to mitigate this challenge and improve the security of physical layer (PHY) in a three-node wireless communication network. The results of our experiments indicate that by using the SCEO algorithm, an optimal performance and enhanced convergence is achieved in the transmission. However, considering possible security challenges envisaged when a multiple eavesdropper is active in a network, we expanded our research to develop a swift privacy rate optimization algorithm for a multiple-input, multiple-output, multiple-eavesdropper (MIMOME) scenario as it is applicable to security in IoT and 5G technologies. The result of the investigation show that the algorithm executes significantly with minimal complexity when compared with nonoptimal parameters. We further employed the use of rate constraint together with self-interference of the full-duplex transmission at the receiving node, which makes the performance of our technique outstanding when compared with previous studies.

9.
Sensors (Basel) ; 19(17)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450772

RESUMEN

The world population is expected to grow by another two billion in 2050, according to the survey taken by the Food and Agriculture Organization, while the arable area is likely to grow only by 5%. Therefore, smart and efficient farming techniques are necessary to improve agriculture productivity. Agriculture land suitability assessment is one of the essential tools for agriculture development. Several new technologies and innovations are being implemented in agriculture as an alternative to collect and process farm information. The rapid development of wireless sensor networks has triggered the design of low-cost and small sensor devices with the Internet of Things (IoT) empowered as a feasible tool for automating and decision-making in the domain of agriculture. This research proposes an expert system by integrating sensor networks with Artificial Intelligence systems such as neural networks and Multi-Layer Perceptron (MLP) for the assessment of agriculture land suitability. This proposed system will help the farmers to assess the agriculture land for cultivation in terms of four decision classes, namely more suitable, suitable, moderately suitable, and unsuitable. This assessment is determined based on the input collected from the various sensor devices, which are used for training the system. The results obtained using MLP with four hidden layers is found to be effective for the multiclass classification system when compared to the other existing model. This trained model will be used for evaluating future assessments and classifying the land after every cultivation.

10.
Front Bioeng Biotechnol ; 11: 1211143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397968

RESUMEN

Purpose: In the contemporary era, a significant number of individuals encounter various health issues, including digestive system ailments, even during their advanced years. The major purpose of this study is based on certain observations that are made in internal digestive systems in order to prevent severe cause that usually occurs in elderly people. Approach: To solve the purpose of the proposed method the proposed system is introduced with advanced features and parametric monitoring system that are based on wireless sensor setups. The parametric monitoring system is integrated with neural network where certain control actions are taken to prevent gastrointestinal activities at reduced data loss. Results: The outcome of the combined process is examined based on four different cases that is designed based on analytical model where control parameters and weight establishments are also determined. As the internal digestive system is monitored the data loss that is present with wireless sensor network must be reduced and proposed approach prevents such data loss with an optimized value of 1.39%. Conclusion: Parametric cases were conducted to evaluate the efficacy of neural networks. The findings indicate a significantly higher effectiveness rate of approximately 68% when compared to the control cases.

11.
Big Data ; 11(5): 339-354, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35076283

RESUMEN

The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.


Asunto(s)
Inteligencia Artificial , Nube Computacional , Simulación por Computador , Internet , Comercio
12.
Biomedicines ; 11(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36831118

RESUMEN

There has been a sharp increase in liver disease globally, and many people are dying without even knowing that they have it. As a result of its limited symptoms, it is extremely difficult to detect liver disease until the very last stage. In the event of early detection, patients can begin treatment earlier, thereby saving their lives. It has become increasingly popular to use ensemble learning algorithms since they perform better than traditional machine learning algorithms. In this context, this paper proposes a novel architecture based on ensemble learning and enhanced preprocessing to predict liver disease using the Indian Liver Patient Dataset (ILPD). Six ensemble learning algorithms are applied to the ILPD, and their results are compared to those obtained with existing studies. The proposed model uses several data preprocessing methods, such as data balancing, feature scaling, and feature selection, to improve the accuracy with appropriate imputations. Multivariate imputation is applied to fill in missing values. On skewed columns, log1p transformation was applied, along with standardization, min-max scaling, maximum absolute scaling, and robust scaling techniques. The selection of features is carried out based on several methods including univariate selection, feature importance, and correlation matrix. These enhanced preprocessed data are trained on Gradient boosting, XGBoost, Bagging, Random Forest, Extra Tree, and Stacking ensemble learning algorithms. The results of the six models were compared with each other, as well as with the models used in other research works. The proposed model using extra tree classifier and random forest, outperformed the other methods with the highest testing accuracy of 91.82% and 86.06%, respectively, portraying our method as a real-world solution for detecting liver disease.

13.
Math Biosci Eng ; 20(12): 20828-20851, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124578

RESUMEN

The security of the Internet of Things (IoT) is crucial in various application platforms, such as the smart city monitoring system, which encompasses comprehensive monitoring of various conditions. Therefore, this study conducts an analysis on the utilization of blockchain technology for the purpose of monitoring Internet of Things (IoT) systems. The analysis is carried out by employing parametric objective functions. In the context of the Internet of Things (IoT), it is imperative to establish well-defined intervals for job execution, ensuring that the completion status of each action is promptly monitored and assessed. The major significance of proposed method is to integrate a blockchain technique with neuro-fuzzy algorithm thereby improving the security of data processing units in all smart city applications. As the entire process is carried out with IoT the security of data in both processing and storage units are not secured therefore confidence level of monitoring units are maximized at each state. Due to the integration process the proposed system model is implemented with minimum energy conservation where 93% of tasks are completed with improved security for about 90%.

14.
Math Biosci Eng ; 19(3): 2641-2670, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35240800

RESUMEN

Over time, the use of UAVs (unmanned aerial vehicles)/drones has increased across several civil and military application domains. Such domains include real-time monitoring, remote sensing, wireless coverage in disaster areas, search and rescue, product delivery, surveillance, security, agriculture, civil infrastructure inspection, and the like. This rapid growth is opening doors to numerous opportunities and conveniences in everyday life. On the other hand, security and privacy concerns for unmanned aerial vehicles/drones are progressively increasing. With limited standardization and regulation of unmanned aerial vehicles/drones, security and privacy concerns are growing. This paper presents a brief analysis of unmanned aerial vehicle's/drones security and privacy-related concerns. The paper also presents countermeasures and recommendations to address such concerns. While laying out a brief survey of unmanned aerial vehicles/drones, the paper also provides readers with up-to-date information on existing regulations, classification, architecture, and communication methods. It also discusses application areas, vulnerabilities, existing countermeasures against different attacks, and related limitations. In the end, the paper concludes with a discussion on open research areas and recommendations on how the security and privacy of unmanned aerial vehicles can be improved.


Asunto(s)
Aeronaves , Dispositivos Aéreos No Tripulados , Agricultura
15.
Sci Rep ; 12(1): 266, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997109

RESUMEN

Central management of electronic medical systems faces a major challenge because it requires trust in a single entity that cannot effectively protect files from unauthorized access or attacks. This challenge makes it difficult to provide some services in central electronic medical systems, such as file search and verification, although they are needed. This gap motivated us to develop a system based on blockchain that has several characteristics: decentralization, security, anonymity, immutability, and tamper-proof. The proposed system provides several services: storage, verification, and search. The system consists of a smart contract that connects to a decentralized user application through which users can transact with the system. In addition, the system uses an interplanetary file system (IPFS) and cloud computing to store patients' data and files. Experimental results and system security analysis show that the system performs search and verification tasks securely and quickly through the network.

16.
Diagnostics (Basel) ; 12(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359487

RESUMEN

In most maternity hospitals, an ultrasound scan in the mid-trimester is now a standard element of antenatal care. More fetal abnormalities are being detected in scans as technology advances and ability improves. Fetal anomalies are developmental abnormalities in a fetus that arise during pregnancy, birth defects and congenital abnormalities are related terms. Fetal abnormalities have been commonly observed in industrialized countries over the previous few decades. Three out of every 1000 pregnant mothers suffer a fetal anomaly. This research work proposes an Adaptive Stochastic Gradient Descent Algorithm to evaluate the risk of fetal abnormality. Findings of this work suggest that proposed innovative method can successfully classify the anomalies linked with nuchal translucency thickening. Parameters such an accuracy, recall, precision, and F1-score are analyzed. The accuracy achieved through the suggested technique is 98.642.%.

17.
Math Biosci Eng ; 18(6): 8444-8461, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34814307

RESUMEN

With the recent advancement in analytic techniques and the increasing generation of healthcare data, artificial intelligence (AI) is reinventing the healthcare system for tackling pandemics securely in smart cities. AI tools continue register numerous successes in major disease areas such as cancer, neurology and now in new coronavirus SARS-CoV-2 (COVID-19) detection. COVID-19 patients often experience several symptoms which include breathlessness, fever, cough, nausea, sore throat, blocked nose, runny nose, headache, muscle aches, and joint pains. This paper proposes an artificial intelligence (AI) algorithm that predicts the rate of likely survivals of COVID-19 suspected patients based on good immune system, exercises and age quantiles securely. Four algorithms (Naïve Bayes, Logistic Regression, Decision Tree and k-Nearest Neighbours (kNN)) were compared. We performed True Positive (TP) rate and False Positive (FP) rate analysis on both positive and negative covid patients data. The experimental results show that kNN, and Decision Tree both obtained a score of 99.30% while Naïve Bayes and Logistic Regression obtained 91.70% and 99.20%, respectively on TP rate for negative patients. For positive covid patients, Naïve Bayes outperformed other models with a score of 10.90%. On the other hand, Naïve Bayes obtained a score of 89.10% for FP rate for negative patients while Logistic Regression, kNN, and Decision Tree obtained scores of 93.90%, 93.90%, and 94.50%, respectively.


Asunto(s)
COVID-19 , Pandemias , Inteligencia Artificial , Teorema de Bayes , Ciudades , Humanos , Aprendizaje Automático , SARS-CoV-2
18.
Front Public Health ; 8: 357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719767

RESUMEN

Integration of artificial intelligence (AI) techniques in wireless infrastructure, real-time collection, and processing of end-user devices is now in high demand. It is now superlative to use AI to detect and predict pandemics of a colossal nature. The Coronavirus disease 2019 (COVID-19) pandemic, which originated in Wuhan China, has had disastrous effects on the global community and has overburdened advanced healthcare systems throughout the world. Globally; over 4,063,525 confirmed cases and 282,244 deaths have been recorded as of 11th May 2020, according to the European Centre for Disease Prevention and Control agency. However, the current rapid and exponential rise in the number of patients has necessitated efficient and quick prediction of the possible outcome of an infected patient for appropriate treatment using AI techniques. This paper proposes a fine-tuned Random Forest model boosted by the AdaBoost algorithm. The model uses the COVID-19 patient's geographical, travel, health, and demographic data to predict the severity of the case and the possible outcome, recovery, or death. The model has an accuracy of 94% and a F1 Score of 0.86 on the dataset used. The data analysis reveals a positive correlation between patients' gender and deaths, and also indicates that the majority of patients are aged between 20 and 70 years.


Asunto(s)
Inteligencia Artificial , COVID-19/epidemiología , Pandemias , Adulto , Anciano , Algoritmos , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA