Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29764982

RESUMEN

Proper floral patterning, including the number and position of floral organs in most plant species, is tightly controlled by the precise regulation of the persistence and size of floral meristems (FMs). In Arabidopsis, two known feedback pathways, one composed of WUSCHEL (WUS) and CLAVATA3 (CLV3) and the other composed of AGAMOUS (AG) and WUS, spatially and temporally control floral stem cells, respectively. However, mounting evidence suggests that other factors, including phytohormones, are also involved in floral meristem regulation. Here, we show that the boundary gene SUPERMAN (SUP) bridges floral organogenesis and floral meristem determinacy in another pathway that involves auxin signaling. SUP interacts with components of polycomb repressive complex 2 (PRC2) and fine-tunes local auxin signaling by negatively regulating the expression of the auxin biosynthesis genes YUCCA1/4 (YUC1/4). In sup mutants, derepressed local YUC1/4 activity elevates auxin levels at the boundary between whorls 3 and 4, which leads to an increase in the number and the prolonged maintenance of floral stem cells, and consequently an increase in the number of reproductive organs. Our work presents a new floral meristem regulatory mechanism, in which SUP, a boundary gene, coordinates floral organogenesis and floral meristem size through fine-tuning auxin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Oxigenasas de Función Mixta/genética , Mutación , Fenotipo , Complejo Represivo Polycomb 2/genética , Células Madre/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(27): 7166-7171, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634297

RESUMEN

The molecular and genetic networks underlying the determination of floral organ identity are well studied, but much less is known about how the flower is partitioned into four developmentally distinct whorls. The SUPERMAN gene is required for proper specification of the boundary between stamens in whorl 3 and carpels in whorl 4, as superman mutants exhibit supernumerary stamens but usually lack carpels. However, it has remained unclear whether extra stamens in superman mutants originate from an organ identity change in whorl 4 or the overproliferation of whorl 3. Using live confocal imaging, we show that the extra stamens in superman mutants arise from cells in whorl 4, which change their fate from female to male, while floral stem cells proliferate longer, allowing for the production of additional stamens.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Células Madre/citología , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes Homeobox , Genes de Plantas , Microscopía Confocal , Mutación , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
3.
Dev Biol ; 419(1): 114-120, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-26992363

RESUMEN

Recent advances in confocal microscopy, coupled with the development of numerous fluorescent reporters, provide us with a powerful tool to study the development of plants. Live confocal imaging has been used extensively to further our understanding of the mechanisms underlying the formation of roots, shoots and leaves. However, it has not been widely applied to flowers, partly because of specific challenges associated with the imaging of flower buds. Here, we describe how to prepare and grow shoot apices of Arabidopsis in vitro, to perform both single-point and time-lapse imaging of live, developing flower buds with either an upright or an inverted confocal microscope.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Botánica/métodos , Flores/crecimiento & desarrollo , Microscopía Confocal/métodos , Imagen de Lapso de Tiempo/métodos , Arabidopsis/genética , Arabidopsis/ultraestructura , Botánica/instrumentación , Diseño de Equipo , Flores/ultraestructura , Genes Reporteros , Inflorescencia/crecimiento & desarrollo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Meristema/crecimiento & desarrollo , Microscopía Confocal/instrumentación , Fotomicrografía/métodos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Imagen de Lapso de Tiempo/instrumentación
4.
Methods Mol Biol ; 1110: 3-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24395250

RESUMEN

The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257-263, 1980; Koornneef et al., J Hered 74:265-272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195-203, 1988; Bowman et al., Plant Cell 1:37-52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/citología , Flores/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Células Madre/citología , Factores de Transcripción/metabolismo
5.
Methods Mol Biol ; 1110: 103-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24395254

RESUMEN

Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.


Asunto(s)
Flores/crecimiento & desarrollo , Evolución Molecular , Flores/anatomía & histología , Flores/genética , Meristema/anatomía & histología , Meristema/genética , Meristema/crecimiento & desarrollo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA