Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(27): e2401131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563587

RESUMEN

Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.

2.
iScience ; 27(10): 110924, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39346676

RESUMEN

The photocatalytic reduction of carbon dioxide (CO2) into multi-electron carbon products remains challenging due to the inherent stability of CO2 and slow multi-electron transfer kinetics. Here in, we synthesized a hybrid material, cesium copper halide (Cs3Cu2I5) intercalated onto two-dimensional (2D) cobalt-based zeolite framework (ZIF-9-III) nanosheets (denoted as Cs3Cu2I5@ZIF-1) through a simple mechanochemical grinding. The synergy in the hybrid effectively reduces CO2 to carbon monoxide (CO) at 110 µmol/g/h and methane at 5 µmol/g/h with high selectivity, suppressing hydrogen evolution. Further, we have investigated additional Cs3Cu2I5@ZIF hybrids with varying ZIF-9-III amounts, confirming their selective CO2 reduction to methane over hydrogen. Density functional theory (DFT) calculations reveal a non-covalent interaction between Cs3Cu2I5 and ZIF-9-III, with electron transfer suggesting potential for improved photocatalysis.

3.
ACS Appl Mater Interfaces ; 14(46): 51855-51866, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36354751

RESUMEN

Metal nanoparticles grafted within inert and porous wide-area supports are emerging as recyclable, sustainable catalysts for modern industry applications. Here, we bioengineered gold nanoparticle-based supported catalysts by utilizing the innate metal binding and reductive potential of eggshell as a sustainable strategy. Variable hand-recyclable wide-area three-dimensional catalysts between ∼80 ± 7 and 0.5 ± 0.1 cm2 are generated simply by controlling the size of the support. The catalyst possessed high-temperature stability (300 °C) and compatibility toward polar and nonpolar solvents, electrolytes, acids, and bases facilitating ultra-efficient catalysis of accordingly suspended substrates. Validation was done by large-volume (2.8 liters) dye detoxification, gram-scale hydrogenation of nitroarene, and the synthesis of propargylamine. Moreover, persistent recyclability, monitoring of reaction kinetics, and product intermediates are possible due to physical retrievability and interchangeability of the catalyst. Finally, the bionature of the support permits ∼76.9 ± 8% recovery of noble gold simply by immersing in a royal solution. Our naturally created, low-cost, scalable, hand-recyclable, and resilient supported mega-catalyst dwarfs most challenges for large-scale metal-based heterogeneous catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA