Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2203900119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36475944

RESUMEN

Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.g., bands in protoxylem. The orientation and patterning of cellulose fibrils are guided by dynamic cortical microtubules. New microtubules are predominantly nucleated from parent microtubules causing positive feedback on local microtubule density with the potential to yield highly inhomogeneous patterns. Inhomogeneity indeed appears in all current cortical array simulations that include microtubule-based nucleation, suggesting that plant cells must possess an as-yet unknown balancing mechanism to prevent it. Here, in a combined simulation and experimental approach, we show that a limited local recruitment of nucleation complexes to microtubules can counter the positive feedback, whereas local tubulin depletion cannot. We observe that nucleation complexes preferentially appear at the plasma membrane near microtubules. By incorporating our experimental findings in stochastic simulations, we find that the spatial behavior of nucleation complexes delicately balances the positive feedback, such that differences in local microtubule dynamics-as in developing protoxylem-can quickly turn a homogeneous array into a banded one. Our results provide insight into how the plant cytoskeleton has evolved to meet diverse mechanical requirements and greatly increase the predictive power of computational cell biology studies.


Asunto(s)
Biología Computacional , Microtúbulos
2.
J Exp Bot ; 75(5): 1274-1288, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37962515

RESUMEN

ROPs (Rho of Plants) are plant specific small GTPases involved in many membrane patterning processes and play important roles in the establishment and communication of cell polarity. These small GTPases can produce a wide variety of patterns, ranging from a single cluster in tip-growing root hairs and pollen tubes to an oriented stripe pattern controlling protoxylem cell wall deposition. For an understanding of what controls these various patterns, models are indispensable. Consequently, many modelling studies on small GTPase patterning exist, often focusing on yeast or animal cells. Multiple patterns occurring in plants, however, require the stable co-existence of multiple active ROP clusters, which does not occur with the most common yeast/animal models. The possibility of such patterns critically depends on the precise model formulation. Additionally, different small GTPases are usually treated interchangeably in models, even though plants possess two types of ROPs with distinct molecular properties, one of which is unique to plants. Furthermore, the shape and even the type of ROP patterns may be affected by the cortical cytoskeleton, and cortex composition and anisotropy differ dramatically between plants and animals. Here, we review insights into ROP patterning from modelling efforts across kingdoms, as well as some outstanding questions arising from these models and recent experimental findings.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Saccharomyces cerevisiae , Animales , Plantas/genética , Modelos Teóricos
3.
BMC Genomics ; 24(1): 123, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927388

RESUMEN

BACKGROUND: The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. METHODS: To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. RESULTS: Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. CONCLUSIONS: The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.


Asunto(s)
Isópteros , Termitomyces , Animales , Isópteros/genética , Isópteros/microbiología , Termitomyces/genética , Hongos/genética , Genómica , Simbiosis/genética , Ligamiento Genético
4.
J Theor Biol ; 502: 110351, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505828

RESUMEN

In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Microtúbulos/metabolismo , Proteínas de Unión al GTP rho/metabolismo
5.
PLoS One ; 14(3): e0213188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30845201

RESUMEN

Many biological processes have to occur at specific locations on the cell membrane. These locations are often specified by the localised activity of small GTPase proteins. Some processes require the formation of a single cluster of active GTPase, also called unipolar polarisation (here "polarisation"), whereas others need multiple coexisting clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated after its formation. This raises the question how the same interacting protein components can produce such a rich variety of naturally occurring patterns. Most currently used models for GTPase-based patterning inherently yield polarisation. Such models may at best yield transient coexistence of at most a few clusters, and hence fail to explain several important biological phenomena. These existing models are all based on mass conservation of total GTPase and some form of direct or indirect positive feedback. Here, we show that either of two biologically plausible modifications can yield stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation, or negative feedback by activation of an inhibitor like a GAP. Since we start from two different polarising models our findings seem independent of the precise self-activation mechanism. By studying the net GTPase flows among clusters, we provide insight into how these mechanisms operate. Our coexistence models also allow for dynamical regulation of the final pattern, which we illustrate with examples of pollen tube growth and the branching of fungal hyphae. Together, these results provide a better understanding of how cells can tune a single system to generate a wide variety of biologically relevant patterns.


Asunto(s)
Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Proteínas de Unión al GTP Monoméricas/química
6.
Ultrasonics ; 84: 421-429, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248794

RESUMEN

Commercially available intracardiac echo (ICE) catheters face a trade-off between viewing depth and resolution. Frequency-tunable ICE probes would offer versatility of choice between penetration or resolution imaging within a single device. In this phantom study, the imaging performance of a novel, frequency-tunable, 32-element, 1-D CMUT array integrated with front-end electronics is evaluated. Phased-array ultrasound imaging with a forward-looking CMUT probe prototype operated beyond collapse mode at voltages up to three times higher than the collapse voltage (-65 V) is demonstrated. Imaging performance as a function of bias voltage (-70 V to -160 V), transmit pulse frequency (5-25 MHz), and number of transmit pulse cycles (1-3) is quantified, based on which penetration, resolution, and generic imaging modes are identified. It is shown that by utilizing the concept of frequency tuning, images with different characteristics can be generated trading-off the resolution and penetration depth. The penetration mode provides imaging up to 71 mm in the tissue-mimicking phantom, axial resolution of 0.44 mm, and lateral resolution of 0.12 rad. In the resolution mode, axial resolution of 0.055 mm, lateral resolution of 0.035 rad, and penetration depth of 16 mm are measured. These results show what this CMUT array has the potential versatile characteristics needed for intracardiac imaging, despite its relatively small transducer aperture size of 2 mm × 2 mm imposed by the clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA