RESUMEN
Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.
Asunto(s)
Sistemas CRISPR-Cas , Perfilación de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Células Cultivadas , Exoma , Femenino , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Rituximab/administración & dosificaciónRESUMEN
BACKGROUND: The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown. METHODS: We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs. A phase 2 expansion in patients with germinal-center B-cell (GCB) and non-GCB DLBCL was performed. ViPOR was administered every 21 days for six cycles. RESULTS: In phase 1b of the study, involving 20 patients (10 with DLBCL), a single dose-limiting toxic effect of grade 3 intracranial hemorrhage occurred, a result that established venetoclax at a dose of 800 mg as the recommended phase 2 dose. Phase 2 included 40 patients with DLBCL. Toxic effects that were observed among all the patients included grade 3 or 4 neutropenia (in 24% of the cycles), thrombocytopenia (in 23%), anemia (in 7%), and febrile neutropenia (in 1%). Objective responses occurred in 54% of 48 evaluable patients with DLBCL, and complete responses occurred in 38%; complete responses were exclusively in patients with non-GCB DLBCL and high-grade B-cell lymphoma with rearrangements of MYC and BCL2 or BCL6 (or both). Circulating tumor DNA was undetectable in 33% of the patients at the end of ViPOR therapy. With a median follow-up of 40 months, 2-year progression-free survival and overall survival were 34% (95% confidence interval [CI], 21 to 47) and 36% (95% CI, 23 to 49), respectively. CONCLUSIONS: Treatment with ViPOR was associated with durable remissions in patients with specific molecular DLBCL subtypes and was associated with mainly reversible adverse events. (Funded by the Intramural Research Program of the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health and others; ClinicalTrials.gov number, NCT03223610.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Lenalidomida , Linfoma de Células B Grandes Difuso , Piperidinas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenina/análogos & derivados , Adenina/efectos adversos , Adenina/uso terapéutico , Adenina/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Lenalidomida/efectos adversos , Lenalidomida/administración & dosificación , Lenalidomida/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Terapia Molecular Dirigida , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Piperidinas/administración & dosificación , Prednisona/efectos adversos , Prednisona/administración & dosificación , Prednisona/uso terapéutico , Supervivencia sin Progresión , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/administración & dosificación , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Recurrencia , Sulfonamidas/efectos adversos , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéuticoRESUMEN
Diffuse large B-cell lymphoma (DLBCL) encompasses a diverse spectrum of aggressive B-cell lymphomas with remarkable genetic heterogeneity and myriad clinical presentations. Multiplatform genomic analyses of DLBCL have identified oncogenic drivers within genetic subtypes that allow for pathologic subclassification of tumors into discrete entities with shared immunophenotypic, genetic, and clinical features. Robust classification of lymphoid tumors establishes a foundation for precision medicine and enables the identification of novel therapeutic vulnerabilities within biologically homogeneous entities. Most cases of DLBCL involving the central nervous system (CNS), vitreous, and testis exhibit immunophenotypic features suggesting an activated B-cell (ABC) origin. Shared molecular features include frequent co-mutations of MYD88 (L265P) and CD79B and frequent genetic alterations promoting immune evasion, which are hallmarks of the MCD/C5/MYD88 genetic subtype of DLBCL. Clinically, these lymphomas primarily arise within anatomic sanctuary sites and have a predilection for remaining confined to extranodal sites and strong CNS tropism. Given the shared clinical and molecular features, the umbrella term primary large B-cell lymphoma of immune-privileged sites (IP-LBCL) was proposed. Other extranodal DLBCL involving breast, adrenal glands, and skin are often ABC DLBCL, but are more heterogeneous in their genomic profile and involve anatomic sites that are not considered immune privileged. In this review, we describe the overlapping clinical, pathologic, and molecular features of IP-LBCL and highlight important considerations for diagnosis, staging and treatment. We also discuss potential therapeutic vulnerabilities of IP-LBCL including sensitivity to inhibitors of Bruton's tyrosine kinase, immunomodulatory agents, and immunotherapy.
RESUMEN
ABSTRACT: Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements ("double hit"; HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of and mechanisms driving IG vs non-IG MYC rearrangements have not been elucidated. Here, we used custom targeted capture and/or whole-genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, although BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because 1 IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B-cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.
Asunto(s)
Reordenamiento Génico , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/genética , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patologíaRESUMEN
Burkitt lymphoma (BL) accounts for most pediatric non-Hodgkin lymphomas, being less common but significantly more lethal when diagnosed in adults. Much of the knowledge of the genetics of BL thus far has originated from the study of pediatric BL (pBL), leaving its relationship to adult BL (aBL) and other adult lymphomas not fully explored. We sought to more thoroughly identify the somatic changes that underlie lymphomagenesis in aBL and any molecular features that associate with clinical disparities within and between pBL and aBL. Through comprehensive whole-genome sequencing of 230 BL and 295 diffuse large B-cell lymphoma (DLBCL) tumors, we identified additional significantly mutated genes, including more genetic features that associate with tumor Epstein-Barr virus status, and unraveled new distinct subgroupings within BL and DLBCL with 3 predominantly comprising BLs: DGG-BL (DDX3X, GNA13, and GNAI2), IC-BL (ID3 and CCND3), and Q53-BL (quiet TP53). Each BL subgroup is characterized by combinations of common driver and noncoding mutations caused by aberrant somatic hypermutation. The largest subgroups of BL cases, IC-BL and DGG-BL, are further characterized by distinct biological and gene expression differences. IC-BL and DGG-BL and their prototypical genetic features (ID3 and TP53) had significant associations with patient outcomes that were different among aBL and pBL cohorts. These findings highlight shared pathogenesis between aBL and pBL, and establish genetic subtypes within BL that serve to delineate tumors with distinct molecular features, providing a new framework for epidemiologic, diagnostic, and therapeutic strategies.
Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Niño , Humanos , Adulto , Linfoma de Burkitt/patología , Herpesvirus Humano 4 , Linfoma de Células B Grandes Difuso/patología , MutaciónRESUMEN
Peripheral T-cell lymphomas (PTCL) are morphologically and biologically heterogeneous and a subset expresses CD30, including anaplastic large cell lymphomas (ALCL) and a minority of PTCL, not otherwise specified (PTCL, NOS). ALCL with ALK translocations (ALCL, ALK+) are readily identified by routine diagnostic methods, but differentiating ALCL without ALK translocation (ALCL, ALK-) and PTCL, NOS expressing CD30 (PTCL CD30+) can be challenging. Furthermore, rare PTCL co-express CD30 and CD15 (PTCL CD30+CD15+); some resemble ALCL, ALK- while others resemble classic Hodgkin lymphoma. To explore the relationship between PTCL CD30+CD15+ and ALCL, ALK-, we analysed 19 cases of PTCL with CD30 expression, previously diagnosed as ALCL, ALK- (nine cases) and PTCL CD30+CD15+ (10 cases) for DUSP22/IRF4 rearrangements, coding RNA expression and selected transcriptome analysis using the NanoString nCounter gene expression analysis platform. Unsupervised clustering showed no clear segregation between ALCL, ALK- and PTCL CD30+CD15+. Three cases previously classified as PTCL CD30+CD15+ showed DUSP22/IRF4 rearrangements, favouring a diagnosis of ALCL, ALK-. Our results suggest that cases previously designated PTCL CD30+CD15+, likely fall within the spectrum of ALCL, ALK-; additionally, a subset of ALCL, ALK- with DUSP22/IRF4 rearrangement expresses CD15, consistent with previous reports and expands the immunophenotypic spectrum of this lymphoma subgroup.
Asunto(s)
Quinasa de Linfoma Anaplásico , Antígeno Ki-1 , Antígeno Lewis X , Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , Femenino , Humanos , Masculino , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Fosfatasas de Especificidad Dual/genética , Reordenamiento Génico , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Antígeno Ki-1/metabolismo , Antígeno Ki-1/genética , Antígeno Ki-1/análisis , Antígeno Lewis X/análisis , Antígeno Lewis X/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patología , Linfoma de Células T Periférico/diagnóstico , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genéticaRESUMEN
The modern taxonomy of disease builds a framework for precision medicine, by which traditional pathologic criteria are integrated with clinical and genomic features to define disease entities. Two of the most common subtypes of lymphoma on a worldwide basis are follicular lymphoma (FL) and diffuse large B-cell lymphoma. Although BCL2 translocation is the signature lesion of most nodal FL, recent studies have identified significant diversity among follicle center-derived lesions. BCL2-negative FL is a genetically heterogeneous disease that occurs in both nodal and extranodal sites. Several distinct entities have been recognized in the pediatric age group, including pediatric-type FL, testicular FL, and interferon regulatory factor 4 (IRF4)-rearranged large B-cell lymphoma. Diffuse large B-cell lymphoma is a family of aggressive B-cell neoplasms with marked variation in pathogenesis and clinical features. Gene expression profiling >20 years ago identified the cell of origin as a key discriminator, but more recently high-throughput sequencing has identified highly varied mutational profiles that point the way in the future toward improvements in targeted therapy and patient outcome.
Asunto(s)
Linfoma Folicular , Linfoma de Células B Grandes Difuso , Humanos , Niño , Medicina de Precisión , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , GenómicaRESUMEN
Peripheral T-cell lymphomas (PTCLs) are heterogenous T-cell neoplasms often associated with epigenetic dysregulation. We investigated de novo DNA methyltransferase 3A (DNMT3A) mutations in common PTCL entities, including angioimmunoblastic T-cell lymphoma and novel molecular subtypes identified within PTCL-not otherwise specified (PTCL-NOS) designated as PTCL-GATA3 and PTCL-TBX21. DNMT3A-mutated PTCL-TBX21 cases showed inferior overall survival (OS), with DNMT3A-mutated residues skewed toward the methyltransferase domain and dimerization motif (S881-R887). Transcriptional profiling demonstrated significant enrichment of activated CD8+ T-cell cytotoxic gene signatures in the DNMT3A-mutant PTCL-TBX21 cases, which was further validated using immunohistochemistry. Genomewide methylation analysis of DNMT3A-mutant vs wild-type (WT) PTCL-TBX21 cases demonstrated hypomethylation in target genes regulating interferon-γ (IFN-γ), T-cell receptor signaling, and EOMES (eomesodermin), a master transcriptional regulator of cytotoxic effector cells. Similar findings were observed in a murine model of PTCL with Dnmt3a loss (in vivo) and further validated in vitro by ectopic expression of DNMT3A mutants (DNMT3A-R882, -Q886, and -V716, vs WT) in CD8+ T-cell line, resulting in T-cell activation and EOMES upregulation. Furthermore, stable, ectopic expression of the DNMT3A mutants in primary CD3+ T-cell cultures resulted in the preferential outgrowth of CD8+ T cells with DNMT3AR882H mutation. Single-cell RNA sequencing(RNA-seq) analysis of CD3+ T cells revealed differential CD8+ T-cell subset polarization, mirroring findings in DNMT3A-mutated PTCL-TBX21 and validating the cytotoxic and T-cell memory transcriptional programs associated with the DNMT3AR882H mutation. Our findings indicate that DNMT3A mutations define a cytotoxic subset in PTCL-TBX21 with prognostic significance and thus may further refine pathological heterogeneity in PTCL-NOS and suggest alternative treatment strategies for this subset.
Asunto(s)
Interferón gamma , Linfoma de Células T Periférico , Animales , Interferón gamma/genética , Linfoma de Células T Periférico/patología , Metiltransferasas/genética , Ratones , Mutación , Pronóstico , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Asunto(s)
Linfoma , Neoplasias , Humanos , Linfoma/diagnóstico , Linfoma/genética , Linfoma/terapia , Genómica/métodos , Medicina de Precisión , Secuenciación de Nucleótidos de Alto Rendimiento , Toma de Decisiones ClínicasRESUMEN
Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors.
Asunto(s)
Neoplasias Hematológicas , Linfoma , Comités Consultivos , Consenso , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Humanos , Linfoma/patología , Organización Mundial de la SaludRESUMEN
B cell receptor (BCR) signalling has emerged as a therapeutic target in B cell lymphomas, but inhibiting this pathway in diffuse large B cell lymphoma (DLBCL) has benefited only a subset of patients1. Gene expression profiling identified two major subtypes of DLBCL, known as germinal centre B cell-like and activated B cell-like (ABC)2,3, that show poor outcomes after immunochemotherapy in ABC. Autoantigens drive BCR-dependent activation of NF-κB in ABC DLBCL through a kinase signalling cascade of SYK, BTK and PKCß to promote the assembly of the CARD11-BCL10-MALT1 adaptor complex, which recruits and activates IκB kinase4-6. Genome sequencing revealed gain-of-function mutations that target the CD79A and CD79B BCR subunits and the Toll-like receptor signalling adaptor MYD885,7, with MYD88(L265P) being the most prevalent isoform. In a clinical trial, the BTK inhibitor ibrutinib produced responses in 37% of cases of ABC1. The most striking response rate (80%) was observed in tumours with both CD79B and MYD88(L265P) mutations, but how these mutations cooperate to promote dependence on BCR signalling remains unclear. Here we used genome-wide CRISPR-Cas9 screening and functional proteomics to determine the molecular basis of exceptional clinical responses to ibrutinib. We discovered a new mode of oncogenic BCR signalling in ibrutinib-responsive cell lines and biopsies, coordinated by a multiprotein supercomplex formed by MYD88, TLR9 and the BCR (hereafter termed the My-T-BCR supercomplex). The My-T-BCR supercomplex co-localizes with mTOR on endolysosomes, where it drives pro-survival NF-κB and mTOR signalling. Inhibitors of BCR and mTOR signalling cooperatively decreased the formation and function of the My-T-BCR supercomplex, providing mechanistic insight into their synergistic toxicity for My-T-BCR+ DLBCL cells. My-T-BCR supercomplexes characterized ibrutinib-responsive malignancies and distinguished ibrutinib responders from non-responders. Our data provide a framework for the rational design of oncogenic signalling inhibitors in molecularly defined subsets of DLBCL.
Asunto(s)
Carcinogénesis , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Complejos Multiproteicos/metabolismo , Transducción de Señal , Adenina/análogos & derivados , Animales , Biopsia , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , Diseño de Fármacos , Femenino , Humanos , Linfoma de Células B Grandes Difuso/genética , Ratones , Complejos Multiproteicos/química , Mutación , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Piperidinas , Proteómica , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Receptores de Antígenos de Linfocitos B/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
A biopsy of lymphoid tissue is currently required to diagnose Kaposi sarcoma-associated herpesvirus (KSHV)-associated multicentric Castleman disease (KSHV-MCD). Patients showing clinical manifestations of KSHV-MCD but no pathological changes of KSHV-MCD are diagnosed as KSHV inflammatory cytokine syndrome. However, a lymph node biopsy is not always feasible to make the distinction. A pathognomonic feature of lymph nodes in KSHV-MCD is the expansion of KSHV-infected, lambda-restricted but polyclonal plasmablasts. To investigate whether these cells also reside in extra-nodal sites, effusion from 11 patients with KSHV-MCD and 19 with KSHV inflammatory cytokine syndrome was analysed by multiparametric flow cytometry. A distinct, lambda-restricted plasmablastic population (LRP) with highly consistent immunophenotype was detected in effusions in 8/11 patients with KSHV-MCD. The same population was also observed in 7/19 patients with KSHV inflammatory cytokine syndrome. The detection of LRP stratified KSHV inflammatory cytokine syndrome into two clinically distinct subgroups; those with detectable LRP closely resembled KSHV-MCD, showing similar KSHV viral load, comparable severity of thrombocytopenia and hypoalbuminaemia, and similar incidences of hepatosplenomegaly. Collectively, the detection of LRP by flow cytometry can serve as a valuable tool in diagnosing KSHV-MCD. KSHV inflammatory cytokine syndrome with LRP in effusions may represent a liquid-form of KSHV-MCD.
Asunto(s)
Enfermedad de Castleman , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Enfermedad de Castleman/patología , Ganglios Linfáticos/patología , CitocinasRESUMEN
Lymphomatoid granulomatosis (LYG) is a rare Epstein-Barr virus (EBV)-driven B-cell lymphoproliferative disease (LPD). This disease is hypothesized to result from defective immune surveillance of EBV, with most patients showing evidence of immune dysfunction, despite no known primary immunodeficiency. Pathologically, LYG is graded by the number and density of EBV+ atypical B cells, and other characteristic findings include an angioinvasive/angiodestructive reactive T-cell infiltrate and various degrees of necrosis. Clinically, LYG universally involves the lungs with other common extranodal sites, including skin, central nervous system, liver, and kidneys. Nodal and/or bone marrow involvement is extremely rare and, if present, suggests an alternative diagnosis. Treatment selection is based on histologic grade and underlying pathobiology with low-grade disease hypothesized to be immune-dependent and typically polyclonal and high-grade disease to be immune-independent and typically oligoclonal or monoclonal. Methods of augmenting the immune response to EBV in low-grade LYG include treatment with interferon-α2b, whereas high-grade disease requires immunochemotherapy. Given the underlying defective immune surveillance of EBV, patients with high-grade disease may have a recurrence in the form of low-grade disease after immunochemotherapy, and those with low-grade disease may progress to high-grade disease after immune modulation, which can be effectively managed with crossover treatment. In patients with primary refractory disease or in those with multiple relapses, hematopoietic stem cell transplantation may be considered, but its efficacy is not well established. This review discusses the pathogenesis of LYG and highlights distinct histopathologic and clinical features that distinguish this disorder from other EBV+ B-cell LPDs and lymphomas. Treatment options, including immune modulation and combination immunochemotherapy, are discussed.
Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Granulomatosis Linfomatoide/terapia , Granulomatosis Linfomatoide/virología , Animales , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Inmunoterapia , Granulomatosis Linfomatoide/diagnóstico , Granulomatosis Linfomatoide/patología , Terapia Molecular DirigidaRESUMEN
Pediatric large B-cell lymphomas (LBCLs) share morphological and phenotypic features with adult types but have better prognosis. The higher frequency of some subtypes such as LBCL with IRF4 rearrangement (LBCL-IRF4) in children suggests that some age-related biological differences may exist. To characterize the genetic and molecular heterogeneity of these tumors, we studied 31 diffuse LBCLs (DLBCLs), not otherwise specified (NOS); 20 LBCL-IRF4 cases; and 12 cases of high-grade B-cell lymphoma (HGBCL), NOS in patients ≤25 years using an integrated approach, including targeted gene sequencing, copy-number arrays, and gene expression profiling. Each subgroup displayed different molecular profiles. LBCL-IRF4 had frequent mutations in IRF4 and NF-κB pathway genes (CARD11, CD79B, and MYD88), losses of 17p13 and gains of chromosome 7, 11q12.3-q25, whereas DLBCL, NOS was predominantly of germinal center B-cell (GCB) subtype and carried gene mutations similar to the adult counterpart (eg, SOCS1 and KMT2D), gains of 2p16/REL, and losses of 19p13/CD70. A subset of HGBCL, NOS displayed recurrent alterations of Burkitt lymphoma-related genes such as MYC, ID3, and DDX3X and homozygous deletions of 9p21/CDKN2A, whereas other cases were genetically closer to GCB DLBCL. Factors related to unfavorable outcome were age >18 years; activated B-cell (ABC) DLBCL profile, HGBCL, NOS, high genetic complexity, 1q21-q44 gains, 2p16/REL gains/amplifications, 19p13/CD70 homozygous deletions, and TP53 and MYC mutations. In conclusion, these findings further unravel the molecular heterogeneity of pediatric and young adult LBCL, improve the classification of this group of tumors, and provide new parameters for risk stratification.
Asunto(s)
Factores Reguladores del Interferón/genética , Linfoma de Células B Grandes Difuso/genética , Mutación , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/patología , Masculino , Pronóstico , Transcriptoma , Adulto JovenRESUMEN
BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell-like [ABC], germinal-center B-cell-like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. METHODS: We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. RESULTS: We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on "chronic active" B-cell receptor signaling that is amenable to therapeutic inhibition. CONCLUSIONS: We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.).
Asunto(s)
Perfilación de la Expresión Génica , Heterogeneidad Genética , Linfoma de Células B Grandes Difuso/genética , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Epigénesis Genética , Exoma , Genotipo , Humanos , Estimación de Kaplan-Meier , Linfoma de Células B Grandes Difuso/clasificación , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Pronóstico , Análisis de Secuencia de ADN , TranscriptomaRESUMEN
Histiocytic sarcoma and tumors with dendritic cell differentiation (HDT) are uncommon neoplasms often with an aggressive clinical course that may occur in association with another hematologic malignancy or mediastinal germ cell tumor (secondary HDT, sHDT). Previous studies have shown mutations in the RAS/MAPK pathway in HDT and have demonstrated a clonal relationship between HDT and associated lymphoid malignancies through common translocations or identical immunoglobulin or T-cell receptor gene rearrangements. We performed whole exome sequencing on 16 cases of sHDT to further evaluate the spectrum of mutations that occur in sHDT in the context of an associated lymphoid malignancy, including cases associated with follicular lymphoma (FL), chronic lymphocytic leukemia/small lymphocytic lymphoma, B- and T-cell acute lymphoblastic leukemia/lymphoma and peripheral T-cell lymphoma, NOS. In addition, we assessed the clonal relationship between the HDT and the associated lymphoid malignancy in three cases for which matched samples were available. We found mutations in RAS/MAPK pathway genes in 14/16 cases of sHDT associated with diverse mature and precursor B-cell and T-cell neoplasms, involving KRAS (8/16), BRAF (2/16), NRAS (2/16), MAP2K1 (1/16), and NF1 (1/16). In addition, we note that FL-associated sHDT frequently shares a similar mutational profile to the associated malignancy, identifying mutations in CREBBP or KMT2D in all cases and "aberrant" somatic hypermutation in 5/6 cases. Our study confirms the role of the RAS/MAPK pathway in the pathogenesis of sHDT, provides further evidence of a common neoplastic precursor and, in the case of FL, gives additional insight into the stage in lymphomagenesis at which transdifferentiation may occur.
Asunto(s)
Sarcoma Histiocítico/genética , Linfoma/genética , Neoplasias Primarias Múltiples/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Análisis Mutacional de ADN , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Persona de Mediana Edad , Proteínas ras/genética , Proteínas ras/metabolismoRESUMEN
Primary cutaneous lymphomas are a heterogeneous group of T- and B-cell lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. The 2005 World Health Organization-European Organization for Research and Treatment of Cancer (WHO-EORTC) consensus classification has served as a golden standard for the diagnosis and classification of these conditions. In September 2018, an updated version of the WHO-EORTC was published in the fourth edition of the WHO Classification of Skin Tumours Blue Book. In this classification, primary cutaneous acral CD8+ T-cell lymphoma and Epstein-Barr virus positive (EBV+) mucocutaneous ulcer are included as new provisional entities, and a new section on cutaneous forms of chronic active EBV disease has been added. The term "primary cutaneous CD4+ small/medium T-cell lymphoma" was modified to "primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder" because of its indolent clinical behavior and uncertain malignant potential. Modifications have also been made in the sections on lymphomatoid papulosis, increasing the spectrum of histologic and genetic types, and primary cutaneous marginal zone lymphomas recognizing 2 different subtypes. Herein, the characteristic features of these new and modified entities as well as the results of recent molecular studies with diagnostic, prognostic, and/or therapeutic significance for the different types of primary cutaneous lymphomas are reviewed. An update of the frequency and survival of the different types of primary cutaneous lymphomas is provided.
Asunto(s)
Linfoma Cutáneo de Células T/clasificación , Neoplasias Cutáneas/clasificación , Herpesvirus Humano 4 , Humanos , Linfoma de Células B , Linfoma Cutáneo de Células T/diagnóstico , Linfoma Cutáneo de Células T/terapia , Técnicas de Diagnóstico Molecular/tendencias , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/terapia , Terapéutica/tendencias , Organización Mundial de la SaludRESUMEN
Primary effusion lymphoma (PEL) is an aggressive HIV-associated lymphoma with a relatively poor prognosis in the era of effective HIV therapy. Kaposi sarcoma herpesvirus (KSHV) is the etiologic agent, and â¼80% of tumors are coinfected with Epstein-Barr virus (EBV). A better understanding of how KSHV-related immune dysregulation contributes to the natural history of PEL will improve outcomes. Twenty patients with PEL diagnosed between 2000 and 2013, including 19 treated with modified infusional etoposide, vincristine, and doxorubicin with cyclophosphamide and prednisone (EPOCH), were identified. We compared their clinical, virologic, and immunologic features vs 20 patients with HIV-associated diffuse large B-cell lymphoma and 19 patients with symptomatic interleukin (IL)-6 related KSHV-associated multicentric Castleman disease. Survival analyses of treated patients with PEL were then performed to identify prognostic factors and cancer-specific mortality. Compared with HIV-associated diffuse large B-cell lymphoma, PEL was associated with significant hypoalbuminemia (P < .0027), thrombocytopenia (P = .0045), and elevated IL-10 levels (P < .0001). There were no significant differences in these parameters between PEL and KSHV-associated multicentric Castleman disease. Median overall survival in treated patients with PEL was 22 months, with a plateau in survival noted after 2 years. Three-year cancer-specific survival was 47%. EBV-positive tumor status was associated with improved survival (hazard ratio, 0.27; P = .038), and elevated IL-6 level was associated with inferior survival (hazard ratio, 6.1; P = .024). Our analysis shows that IL-6 and IL-10 levels contribute to the natural history of PEL. Inflammatory cytokines and tumor EBV status are the strongest prognostic factors. Pathogenesis-directed first-line regimens are needed to improve overall survival in PEL.
Asunto(s)
Enfermedad de Castleman/virología , Linfoma de Células B Grandes Difuso/virología , Linfoma de Efusión Primaria/patología , Sarcoma de Kaposi/virología , Adulto , Anciano , Citocinas/sangre , Citocinas/inmunología , Femenino , Herpesvirus Humano 4 , Herpesvirus Humano 8 , Humanos , Interleucina-10/sangre , Interleucina-6/sangre , Linfoma de Efusión Primaria/complicaciones , Linfoma de Efusión Primaria/inmunología , Linfoma de Efusión Primaria/virología , Masculino , Persona de Mediana Edad , Pronóstico , Sarcoma de Kaposi/patología , Análisis de Supervivencia , Adulto JovenRESUMEN
The new recently described provisional lymphoma category Burkitt-like lymphoma with 11q aberration comprises cases similar to Burkitt lymphoma (BL) on morphological, immunophenotypic and gene-expression levels but lacking the IG-MYC translocation. They are characterized by a peculiar imbalance pattern on chromosome 11, but the landscape of mutations is not yet described. Thus, we investigated 15 MYC-negative Burkitt-like lymphoma with 11q aberration (mnBLL,11q,) cases by copy-number analysis and whole-exome sequencing. We refined the regions of 11q imbalance and identified the INO80 complex-associated gene NFRKB as a positional candidate in 11q24.3. Next to recurrent gains in 12q13.11-q24.32 and 7q34-qter as well as losses in 13q32.3-q34, we identified 47 genes recurrently affected by protein-changing mutations (each ≥3 of 15 cases). Strikingly, we did not detect recurrent mutations in genes of the ID3-TCF3 axis or the SWI/SNF complex that are frequently altered in BL, or in genes frequently mutated in germinal center-derived B-cell lymphomas like KMT2D or CREBBP An exception is GNA13, which was mutated in 7 of 15 cases. We conclude that the genomic landscape of mnBLL,11q, differs from that of BL both at the chromosomal and mutational levels. Our findings implicate that mnBLL,11q, is a lymphoma category distinct from BL at the molecular level.