Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672584

RESUMEN

BACKGROUND: Prostate cancer is a prevalent cancer among men. Multiparametric ultrasound [mpUS] is a diagnostic instrument that uses various types of ultrasounds to diagnose it. This systematic review aims to evaluate the performance of different parametric ultrasounds in diagnosing prostate cancer by associating with radical prostatectomy specimens. METHODOLOGY: A review was performed on various ultrasound parameters using five databases. Systematic review tools were utilized to eliminate duplicates and identify relevant results. Reviewers used the Quality Assessment of Diagnostic Accuracy Results [QUADAS-2] to evaluate the bias and applicability of the study outcomes. RESULT: Between 2012 and 2023, eleven studies were conducted to evaluate the performance of the different ultrasound parametric procedures in detecting prostate cancer using grayscale TRUS, SWE, CEUS, and mpUS. The high sensitivity of these procedures was found at 55%, 88.6%, 81%, and 74%, respectively. The specificity of these procedures was found to be 93.4%, 97%, 88%, and 59%, respectively. This high sensitivity and specificity may be associated with the large lesion size. The studies revealed that the sensitivity of these procedures in diagnosing clinically significant prostate cancer was 55%, 73%, 70%, and 74%, respectively, while the specificity was 61%, 78.2%, 62%, and 59%, respectively. CONCLUSIONS: The mpUS procedure provides high sensitivity and specificity in PCa detection, especially for clinically significant prostate cancer.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927856

RESUMEN

Medical imaging has allowed for significant advancements in the field of ultrasound procedures over the years. However, each imaging modality exhibits distinct limitations that differently affect their accuracy. It is imperative to ensure the quality of each modality to identify and eliminate these limitations. To achieve this, a tissue-mimicking material (TMM) phantom is utilised for validation. This study aims to perform a systematic analysis of tissue-mimicking materials used for creating ultrasound phantoms. We reviewed 234 studies on the use of TMM phantoms in ultrasound that were published from 2013 to 2023 from two research databases. Our focus was on studies that discussed TMMs' properties and fabrication for ultrasound, elastography, and flow phantoms. The screening process led to the selection of 16 out of 234 studies to include in the analysis. The TMM ultrasound phantoms were categorised into three groups based on the solvent used; each group offers a broad range of physical properties. The water-based material most closely aligns with the properties of ultrasound. This study provides important information about the materials used for ultrasound phantoms. We also compared these materials to real human tissues and found that PVA matches most of the human tissues the best.

3.
Cancers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672536

RESUMEN

BACKGROUND: Renal cancers are among the top ten causes of cancer-specific mortality, of which the ccRCC subtype is responsible for most cases. The grading of ccRCC is important in determining tumour aggressiveness and clinical management. OBJECTIVES: The objectives of this research were to predict the WHO/ISUP grade of ccRCC pre-operatively and characterise the heterogeneity of tumour sub-regions using radiomics and ML models, including comparison with pre-operative biopsy-determined grading in a sub-group. METHODS: Data were obtained from multiple institutions across two countries, including 391 patients with pathologically proven ccRCC. For analysis, the data were separated into four cohorts. Cohorts 1 and 2 included data from the respective institutions from the two countries, cohort 3 was the combined data from both cohort 1 and 2, and cohort 4 was a subset of cohort 1, for which both the biopsy and subsequent histology from resection (partial or total nephrectomy) were available. 3D image segmentation was carried out to derive a voxel of interest (VOI) mask. Radiomics features were then extracted from the contrast-enhanced images, and the data were normalised. The Pearson correlation coefficient and the XGBoost model were used to reduce the dimensionality of the features. Thereafter, 11 ML algorithms were implemented for the purpose of predicting the ccRCC grade and characterising the heterogeneity of sub-regions in the tumours. RESULTS: For cohort 1, the 50% tumour core and 25% tumour periphery exhibited the best performance, with an average AUC of 77.9% and 78.6%, respectively. The 50% tumour core presented the highest performance in cohorts 2 and 3, with average AUC values of 87.6% and 76.9%, respectively. With the 25% periphery, cohort 4 showed AUC values of 95.0% and 80.0% for grade prediction when using internal and external validation, respectively, while biopsy histology had an AUC of 31.0% for the classification with the final grade of resection histology as a reference standard. The CatBoost classifier was the best for each of the four cohorts with an average AUC of 80.0%, 86.5%, 77.0% and 90.3% for cohorts 1, 2, 3 and 4 respectively. CONCLUSIONS: Radiomics signatures combined with ML have the potential to predict the WHO/ISUP grade of ccRCC with superior performance, when compared to pre-operative biopsy. Moreover, tumour sub-regions contain useful information that should be analysed independently when determining the tumour grade. Therefore, it is possible to distinguish the grade of ccRCC pre-operatively to improve patient care and management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA