Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179667

RESUMEN

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteroides , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Meropenem , Ratones , Mucinas/metabolismo , Moco/metabolismo , Polisacáridos/metabolismo , Xilosa
2.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36736321

RESUMEN

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Disbiosis , Intestinos/patología , Enfermedad Injerto contra Huésped/patología
3.
Bioinformatics ; 40(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38788190

RESUMEN

MOTIVATION: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. RESULTS: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the taxonomic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. AVAILABILITY AND IMPLEMENTATION: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package.


Asunto(s)
Microbiota , Humanos , Programas Informáticos , Metabolómica/métodos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/metabolismo , Microbioma Gastrointestinal , Algoritmos
4.
Blood ; 141(10): 1194-1208, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36044667

RESUMEN

Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a costimulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis. We thus created an OX40-specific cytotoxic receptor that, when expressed on human T cells, enables selective elimination of OX40+ T cells. Because OX40 is primarily upregulated on CD4+ T cells upon activation, engineered OX40-specific T cells mediated potent cytotoxicity against activated CD4+ T cells and suppressed alloreactive T-cell expansion in a mixed lymphocyte reaction model. OX40 targeting did not inhibit antiviral activity of memory T cells specific to Epstein-Barr virus, cytomegalovirus, and adenoviral antigens. Systemic administration of OX40-targeting T cells fully protected mice from fatal xenogeneic GVHD mediated by human peripheral blood mononuclear cells. Furthermore, combining OX40 targeting with a leukemia-specific chimeric antigen receptor in a single T cell product provides simultaneous protection against leukemia and aGVHD in a mouse xenograft model of residual disease posttransplant. These results underscore the central role of OX40+ T cells in mediating aGVHD pathogenesis and support the feasibility of a bifunctional engineered T-cell product derived from the stem cell donor to suppress both disease relapse and aGVHD following allo-HSCT.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Humanos , Animales , Ratones , Leucocitos Mononucleares/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Macaca mulatta , Herpesvirus Humano 4 , Enfermedad Injerto contra Huésped/etiología , Leucemia/complicaciones , Enfermedad Crónica , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Recurrencia
5.
Proteomics ; : e2400078, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824665

RESUMEN

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

6.
Cancer ; 130(1): 150-161, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688396

RESUMEN

BACKGROUND: This study investigated the influence of oral microbial features on the trajectory of oral mucositis (OM) in patients with squamous cell carcinoma of the head and neck. METHODS: OM severity was assessed and buccal swabs were collected at baseline, at the initiation of cancer treatment, weekly during cancer treatment, at the termination of cancer treatment, and after cancer treatment termination. The oral microbiome was characterized via the 16S ribosomal RNA V4 region with the Illumina platform. Latent class mixed-model analysis was used to group individuals with similar trajectories of OM severity. Locally estimated scatterplot smoothing was used to fit an average trend within each group and to assess the association between the longitudinal OM scores and longitudinal microbial abundances. RESULTS: Four latent groups (LGs) with differing patterns of OM severity were identified for 142 subjects. LG1 has an early onset of high OM scores. LGs 2 and 3 begin with relatively low OM scores until the eighth and 11th week, respectively. LG4 has generally flat OM scores. These LGs did not vary by treatment or clinical or demographic variables. Correlation analysis showed that the abundances of Bacteroidota, Proteobacteria, Bacteroidia, Gammaproteobacteria, Enterobacterales, Bacteroidales, Aerococcaceae, Prevotellaceae, Abiotrophia, and Prevotella_7 were positively correlated with OM severity across the four LGs. Negative correlation was observed with OM severity for a few microbial features: Abiotrophia and Aerococcaceae for LGs 2 and 3; Gammaproteobacteria and Proteobacteria for LGs 2, 3, and 4; and Enterobacterales for LGs 2 and 4. CONCLUSIONS: These findings suggest the potential to personalize treatment for OM. PLAIN LANGUAGE SUMMARY: Oral mucositis (OM) is a common and debilitating after effect for patients treated for squamous cell carcinoma of the head and neck. Trends in the abundance of specific microbial features may be associated with patterns of OM severity over time. Our findings suggest the potential to personalize treatment plans for OM via tailored microbiome interventions.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Microbiota , Estomatitis , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/tratamiento farmacológico
7.
Blood ; 139(15): 2392-2405, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-34653248

RESUMEN

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Butiratos , Ácidos Grasos Volátiles/fisiología , Ratones , Linfocitos T
8.
J Natl Compr Canc Netw ; : 1-8, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190801

RESUMEN

Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for many cancer types. The clinical use of ICIs is increasing rapidly, including in combinations associated with increased risk of toxicities, termed "immune-related adverse events" (irAEs). Therefore, MD Anderson Cancer Center (MDACC) in Houston, Texas has proactively responded by developing a priority endeavor known as the Immuno-Oncology Toxicity (IOTOX) initiative. This strategic initiative aims to facilitate the seamless integration of key domains: (1) standardized clinical practice and innovative decision toolsets; (2) patient and provider education; and (3) a comprehensive clinical and translational research platform. The ultimate goal of this initiative is to develop and disseminate clinical best practices and biologic insights into irAEs to improve outcomes of patients with irAEs at MDACC and in the wider oncology community.

9.
N Engl J Med ; 382(9): 822-834, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32101664

RESUMEN

BACKGROUND: Relationships between microbiota composition and clinical outcomes after allogeneic hematopoietic-cell transplantation have been described in single-center studies. Geographic variations in the composition of human microbial communities and differences in clinical practices across institutions raise the question of whether these associations are generalizable. METHODS: The microbiota composition of fecal samples obtained from patients who were undergoing allogeneic hematopoietic-cell transplantation at four centers was profiled by means of 16S ribosomal RNA gene sequencing. In an observational study, we examined associations between microbiota diversity and mortality using Cox proportional-hazards analysis. For stratification of the cohorts into higher- and lower-diversity groups, the median diversity value that was observed at the study center in New York was used. In the analysis of independent cohorts, the New York center was cohort 1, and three centers in Germany, Japan, and North Carolina composed cohort 2. Cohort 1 and subgroups within it were analyzed for additional outcomes, including transplantation-related death. RESULTS: We profiled 8767 fecal samples obtained from 1362 patients undergoing allogeneic hematopoietic-cell transplantation at the four centers. We observed patterns of microbiota disruption characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota was associated with a lower risk of death in independent cohorts (cohort 1: 104 deaths among 354 patients in the higher-diversity group vs. 136 deaths among 350 patients in the lower-diversity group; adjusted hazard ratio, 0.71; 95% confidence interval [CI], 0.55 to 0.92; cohort 2: 18 deaths among 87 patients in the higher-diversity group vs. 35 deaths among 92 patients in the lower-diversity group; adjusted hazard ratio, 0.49; 95% CI, 0.27 to 0.90). Subgroup analyses identified an association between lower intestinal diversity and higher risks of transplantation-related death and death attributable to graft-versus-host disease. Baseline samples obtained before transplantation already showed evidence of microbiome disruption, and lower diversity before transplantation was associated with poor survival. CONCLUSIONS: Patterns of microbiota disruption during allogeneic hematopoietic-cell transplantation were similar across transplantation centers and geographic locations; patterns were characterized by loss of diversity and domination by single taxa. Higher diversity of intestinal microbiota at the time of neutrophil engraftment was associated with lower mortality. (Funded by the National Cancer Institute and others.).


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas/mortalidad , Adulto , Biodiversidad , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Análisis de Supervivencia , Trasplante Homólogo/mortalidad
10.
Hepatology ; 75(4): 955-967, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34633706

RESUMEN

BACKGROUND AND AIMS: Hispanics are disproportionately affected by NAFLD, liver fibrosis, cirrhosis, and HCC. Preventive strategies and noninvasive means to identify those in this population at high risk for liver fibrosis, are urgently needed. We aimed to characterize the gut microbiome signatures and related biological functions associated with liver fibrosis in Hispanics and identify environmental and genetic factors affecting them. APPROACH AND RESULTS: Subjects of the population-based Cameron County Hispanic Cohort (CCHC; n = 217) were screened by vibration-controlled transient elastography (FibroScan). Among them, 144 (66.7%) had steatosis and 28 (13.0%) had liver fibrosis. The gut microbiome of subjects with liver fibrosis was enriched with immunogenic commensals (e.g., Prevotella copri, Holdemanella, Clostridiaceae 1) and depleted of Bacteroides caccae, Parabacteroides distasonis, Enterobacter, and Marinifilaceae. The liver fibrosis-associated metagenome was characterized by changes in the urea cycle, L-citrulline biosynthesis and creatinine degradation pathways, and altered synthesis of B vitamins and lipoic acid. These metagenomic changes strongly correlated with the depletion of Parabacteroides distasonis and enrichment of Prevotella and Holdemanella. Liver fibrosis was also associated with depletion of bacterial pathways related to L-fucose biosynthesis. Alcohol consumption, even moderate, was associated with high Prevotella abundance. The single-nucleotide polymorphisms rs3769502 and rs7573751 in the NCK adaptor protein 2 (NCK2) gene positively associated with high Prevotella abundance. CONCLUSION: Hispanics with liver fibrosis display microbiome profiles and associated functional changes that may promote oxidative stress and a proinflammatory environment. These microbiome signatures, together with NCK2 polymorphisms, may have utility in risk modeling and disease prevention in this high-risk population.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Bacteroidetes , Carcinoma Hepatocelular/complicaciones , Microbioma Gastrointestinal/genética , Hispánicos o Latinos/genética , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones
11.
Blood ; 137(11): 1527-1537, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33512409

RESUMEN

We previously described clinically relevant reductions in fecal microbiota diversity in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Recipients of high-dose chemotherapy and autologous HCT (auto-HCT) incur similar antibiotic exposures and nutritional alterations. To characterize the fecal microbiota in the auto-HCT population, we analyzed 1161 fecal samples collected from 534 adult recipients of auto-HCT for lymphoma, myeloma, and amyloidosis in an observational study conducted at 2 transplantation centers in the United States. By using 16S ribosomal gene sequencing, we assessed fecal microbiota composition and diversity, as measured by the inverse Simpson index. At both centers, the diversity of early pretransplant fecal microbiota was lower in patients than in healthy controls and decreased further during the course of transplantation. Loss of diversity and domination by specific bacterial taxa occurred during auto-HCT in patterns similar to those with allo-HCT. Above-median fecal intestinal diversity in the periengraftment period was associated with decreased risk of death or progression (progression-free survival hazard ratio, 0.46; 95% confidence interval, 0.26-0.82; P = .008), adjusting for disease and disease status. This suggests that further investigation into the health of the intestinal microbiota in auto-HCT patients and posttransplant outcomes should be undertaken.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trasplante Homólogo
12.
Annu Rev Med ; 71: 137-148, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31986084

RESUMEN

The microbiome is an integrated part of the human body that can modulate a variety of disease processes and affect prognosis, treatment response, complications, and outcomes. The importance of allogeneic hematopoietic cell transplantation in cancer treatment has resulted in extensive investigations on the interaction between the microbiome and this treatment modality. These investigations are beginning to lead to clinical trials of microbiome-targeted interventions. Here we review some of these discoveries and describe strategies being investigated to manipulate the microbiome for favorable outcomes, such as the proper selection and timing of antibiotics, type of diet and route of administration, probiotics, prebiotics, and fecal microbiota transplantation.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriemia/microbiología , Infecciones por Clostridium/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Enfermedad Injerto contra Huésped/microbiología , Trasplante de Células Madre Hematopoyéticas/métodos , Infecciones del Sistema Respiratorio/microbiología , Biodiversidad , Disbiosis/etiología , Disbiosis/terapia , Neutropenia Febril/tratamiento farmacológico , Trasplante de Microbiota Fecal , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Microbiota/fisiología , Prebióticos , Probióticos , Trasplante Homólogo
13.
Blood ; 136(4): 401-409, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526029

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped/microbiología , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Enfermedad Aguda , Disbiosis , Enfermedad Injerto contra Huésped/etiología , Humanos , Trasplante Homólogo
14.
BMC Cancer ; 22(1): 945, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050658

RESUMEN

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias del Cuello Uterino , Femenino , Microbioma Gastrointestinal/genética , Humanos , Redes y Vías Metabólicas , Metagenoma , Moco
15.
BMC Bioinformatics ; 22(1): 126, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731016

RESUMEN

BACKGROUND: Identification of features is a critical task in microbiome studies that is complicated by the fact that microbial data are high dimensional and heterogeneous. Masked by the complexity of the data, the problem of separating signals (differential features between groups) from noise (features that are not differential between groups) becomes challenging and troublesome. For instance, when performing differential abundance tests, multiple testing adjustments tend to be overconservative, as the probability of a type I error (false positive) increases dramatically with the large numbers of hypotheses. Moreover, the grouping effect of interest can be obscured by heterogeneity. These factors can incorrectly lead to the conclusion that there are no differences in the microbiome compositions. RESULTS: We translate and represent the problem of identifying differential features, which are differential in two-group comparisons (e.g., treatment versus control), as a dynamic layout of separating the signal from its random background. More specifically, we progressively permute the grouping factor labels of the microbiome samples and perform multiple differential abundance tests in each scenario. We then compare the signal strength of the most differential features from the original data with their performance in permutations, and will observe a visually apparent decreasing trend if these features are true positives identified from the data. Simulations and applications on real data show that the proposed method creates a U-curve when plotting the number of significant features versus the proportion of mixing. The shape of the U-Curve can convey the strength of the overall association between the microbiome and the grouping factor. We also define a fragility index to measure the robustness of the discoveries. Finally, we recommend the identified features by comparing p-values in the observed data with p-values in the fully mixed data. CONCLUSIONS: We have developed this into a user-friendly and efficient R-shiny tool with visualizations. By default, we use the Wilcoxon rank sum test to compute the p-values, since it is a robust nonparametric test. Our proposed method can also utilize p-values obtained from other testing methods, such as DESeq. This demonstrates the potential of the progressive permutation method to be extended to new settings.


Asunto(s)
Microbiota , Estadísticas no Paramétricas , Probabilidad
16.
Bioinformatics ; 36(13): 4099-4101, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339223

RESUMEN

SUMMARY: In fields, such as ecology, microbiology and genomics, non-Euclidean distances are widely applied to describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis is commonly used to construct a visualization of the data. However, confounding covariates can make patterns related to the scientific question of interest difficult to observe. We provide adjusted principal coordinates analysis as an easy-to-use tool, available as both an R package and a Shiny app, to improve data visualization in this context, enabling enhanced presentation of the effects of interest. AVAILABILITY AND IMPLEMENTATION: The R package 'aPCoA' and Shiny app can be accessed at https://cran.r-project.org/web/packages/aPCoA/index.html and https://biostatistics.mdanderson.org/shinyapps/aPCoA/.


Asunto(s)
Genómica , Programas Informáticos , Ecología
17.
Immunity ; 37(2): 339-50, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22921121

RESUMEN

Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft versus host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pretransplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISCs during inflammatory intestinal damage.


Asunto(s)
Trasplante de Médula Ósea/inmunología , Enfermedad Injerto contra Huésped/inmunología , Interleucinas/metabolismo , Intestino Delgado/inmunología , Células Madre/metabolismo , Animales , Trasplante de Médula Ósea/efectos adversos , Modelos Animales de Enfermedad , Citometría de Flujo , Enfermedad Injerto contra Huésped/mortalidad , Inmunohistoquímica , Interleucina-23/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Intestino Delgado/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina/metabolismo , Interleucina-22
18.
Biometrics ; 77(3): 824-838, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686846

RESUMEN

The microbiome plays a critical role in human health and disease, and there is a strong scientific interest in linking specific features of the microbiome to clinical outcomes. There are key aspects of microbiome data, however, that limit the applicability of standard variable selection methods. In particular, the observed data are compositional, as the counts within each sample have a fixed-sum constraint. In addition, microbiome features, typically quantified as operational taxonomic units, often reflect microorganisms that are similar in function, and may therefore have a similar influence on the response variable. To address the challenges posed by these aspects of the data structure, we propose a variable selection technique with the following novel features: a generalized transformation and z-prior to handle the compositional constraint, and an Ising prior that encourages the joint selection of microbiome features that are closely related in terms of their genetic sequence similarity. We demonstrate that our proposed method outperforms existing penalized approaches for microbiome variable selection in both simulation and the analysis of real data exploring the relationship of the gut microbiome to body mass index.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Teorema de Bayes , Simulación por Computador , Humanos
19.
Nature ; 517(7533): 205-8, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25337874

RESUMEN

The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Clostridioides difficile/fisiología , Susceptibilidad a Enfermedades/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Microbiota/fisiología , Animales , Antibacterianos/farmacología , Evolución Biológica , Clostridioides difficile/efectos de los fármacos , Clostridium/metabolismo , Colitis/metabolismo , Colitis/microbiología , Colitis/prevención & control , Colitis/terapia , Heces/microbiología , Femenino , Humanos , Intestinos/efectos de los fármacos , Metagenoma/genética , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Microbiota/genética , Simbiosis
20.
Nature ; 528(7583): 560-564, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26649819

RESUMEN

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Asunto(s)
Células Epiteliales/citología , Interleucinas/inmunología , Mucosa Intestinal/citología , Intestino Delgado/citología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Enfermedad Injerto contra Huésped/patología , Humanos , Inmunidad Mucosa , Interleucinas/deficiencia , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Intestino Delgado/inmunología , Intestino Delgado/patología , Ratones , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/inmunología , Células de Paneth/citología , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Nicho de Células Madre , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA