Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(3): 353-64, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824653

RESUMEN

More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.


Asunto(s)
Epigénesis Genética , Haploinsuficiencia , Proteínas Nucleares/genética , Obesidad/genética , Proteínas Represoras/genética , Delgadez/genética , Adolescente , Animales , Índice de Masa Corporal , Niño , Preescolar , Humanos , Ratones , Encuestas Nutricionales , Polimorfismo Genético , Proteína 28 que Contiene Motivos Tripartito
2.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33159854

RESUMEN

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Transducción de Señal , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Biomarcadores , Ensamble y Desensamble de Cromatina , Elementos Transponibles de ADN , Susceptibilidad a Enfermedades , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Inmunidad Innata , Inmunohistoquímica , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , ARN Helicasas/deficiencia , ARN Helicasas/genética , Proteínas de Unión al ARN/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ácido Valproico/farmacología , Pez Cebra
3.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
4.
Cell ; 150(5): 948-60, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939622

RESUMEN

Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Heterocromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Ratones , Lámina Nuclear/metabolismo , Proto-Oncogenes , Factores de Transcripción/genética
5.
Annu Rev Cell Dev Biol ; 26: 471-501, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19575672

RESUMEN

Genetic screens in Drosophila have been instrumental in distinguishing approximately 390 loci involved in position effect variegation and heterochromatin stabilization. Most of the identified genes [so-called Su(var) and E(var) genes] are also conserved in mammals, where more than 50 of their gene products are known to localize to constitutive heterochromatin. From these proteins, approximately 12 core heterochromatin components can be inferred. In addition, there are approximately 30 additional Su(var) and 10 E(var) factors that can, under distinct developmental options, interchange with constitutive heterochromatin and participate in the partitioning of the genome into repressed and active chromatin domains. A significant fraction of the Su(var) and E(var) factors are enzymes that respond to environmental and metabolic signals, thereby allowing both the variation and propagation of epigenetic states to a dynamic chromatin template. Moreover, the misregulation of human SU(VAR) and E(VAR) function can advance cancer and many other human diseases including more complex disorders. As such, mammalian Su(var) and E(var) genes and their products provide a rich source of novel targets for diagnosis of and pharmaceutical intervention in many human diseases.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/genética , Heterocromatina , Humanos , Metiltransferasas/genética , Proteínas Represoras/genética
6.
Mol Cell ; 61(2): 260-73, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26725008

RESUMEN

DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals.


Asunto(s)
Núcleo Celular/metabolismo , Momento de Replicación del ADN , Proteínas de Unión a Telómeros/metabolismo , Animales , Proliferación Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Islas de CpG/genética , Fase G1 , Eliminación de Gen , Regulación de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión a Telómeros/química , Sitio de Iniciación de la Transcripción
7.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999208

RESUMEN

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Asunto(s)
ADN/metabolismo , Heterocromatina , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación , Ratones , Células Madre Embrionarias de Ratones , Secuencias Repetidas en Tándem
8.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513732

RESUMEN

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Animales , Epigenómica , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Represoras/metabolismo
9.
Nat Rev Genet ; 17(8): 487-500, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27346641

RESUMEN

Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.


Asunto(s)
Cromatina/genética , Metilación de ADN , Epigénesis Genética/genética , Animales , Humanos
10.
Mol Cell ; 55(2): 277-90, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24981170

RESUMEN

Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ∼5% of the ESC epigenome. The majority of the ∼8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the >1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact LINE elements in the ESC epigenome.


Asunto(s)
Células Madre Embrionarias/enzimología , Retrovirus Endógenos/genética , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo , Metiltransferasas/fisiología , Proteínas Represoras/fisiología , Animales , Células Cultivadas , Metilación de ADN , Ratones , Procesamiento Proteico-Postraduccional
11.
Chromosoma ; 129(1): 83-98, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950239

RESUMEN

Su(var) mutations define epigenetic factors controlling heterochromatin formation and gene silencing in Drosophila. Here, we identify SU(VAR)2-1 as a novel chromatin regulator that directs global histone deacetylation during the transition of cleavage chromatin into somatic blastoderm chromatin in early embryogenesis. SU(VAR)2-1 is heterochromatin-associated in blastoderm nuclei but not in later stages of development. In larval polytene chromosomes, SU(VAR)2-1 is a band-specific protein. SU(VAR)2-1 directs global histone deacetylation by recruiting the histone deacetylase RPD3. In Su(var)2-1 mutants H3K9, H3K27, H4K8 and H4K16 acetylation shows elevated levels genome-wide and heterochromatin displays aberrant histone hyper-acetylation. Whereas H3K9me2- and HP1a-binding appears unaltered, the heterochromatin-specific H3K9me2S10ph composite mark is impaired in heterochromatic chromocenters of larval salivary polytene chromosomes. SU(VAR)2-1 contains an NRF1/EWG domain and a C2HC zinc-finger motif. Our study identifies SU(VAR)2-1 as a dosage-dependent, heterochromatin-initiating SU(VAR) factor, where the SU(VAR)2-1-mediated control of genome-wide histone deacetylation after cleavage and before mid-blastula transition (pre-MBT) is required to enable heterochromatin formation.


Asunto(s)
Blástula/metabolismo , Drosophila/genética , Drosophila/metabolismo , Desarrollo Embrionario/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Blástula/embriología , Sistemas CRISPR-Cas , Centrosoma , Ensamble y Desensamble de Cromatina , Clonación Molecular , Drosophila/clasificación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Mutación , Filogenia
12.
Mol Cell ; 52(5): 746-57, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24239292

RESUMEN

Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Transición Epitelial-Mesenquimal/genética , Heterocromatina/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Regulación hacia Abajo , Células HEK293 , Histonas/genética , Humanos , Mesodermo/metabolismo , Ratones , Factores de Transcripción de la Familia Snail
13.
Eur Heart J ; 40(4): 383-391, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-29077881

RESUMEN

Aims: Accumulation of reactive oxygen species (ROS) promotes vascular disease in obesity, but the underlying molecular mechanisms remain poorly understood. The adaptor p66Shc is emerging as a key molecule responsible for ROS generation and vascular damage. This study investigates whether epigenetic regulation of p66Shc contributes to obesity-related vascular disease. Methods and results: ROS-driven endothelial dysfunction was observed in visceral fat arteries (VFAs) isolated from obese subjects when compared with normal weight controls. Gene profiling of chromatin-modifying enzymes in VFA revealed a significant dysregulation of methyltransferase SUV39H1 (fold change, -6.9, P < 0.01), demethylase JMJD2C (fold change, 3.2, P < 0.01), and acetyltransferase SRC-1 (fold change, 5.8, P < 0.01) in obese vs. control VFA. These changes were associated with reduced di-(H3K9me2) and trimethylation (H3K9me3) as well as acetylation (H3K9ac) of histone 3 lysine 9 (H3K9) on p66Shc promoter. Reprogramming SUV39H1, JMJD2C, and SRC-1 in isolated endothelial cells as well as in aortas from obese mice (LepOb/Ob) suppressed p66Shc-derived ROS, restored nitric oxide levels, and rescued endothelial dysfunction. Consistently, in vivo editing of chromatin remodellers blunted obesity-related vascular p66Shc expression. We show that SUV39H1 is the upstream effector orchestrating JMJD2C/SRC-1 recruitment to p66Shc promoter. Indeed, SUV39H1 overexpression in obese mice erased H3K9-related changes on p66Shc promoter, while SUV39H1 genetic deletion in lean mice recapitulated obesity-induced H3K9 remodelling and p66Shc transcription. Conclusion: These results uncover a novel epigenetic mechanism underlying endothelial dysfunction in obesity. Targeting SUV39H1 may attenuate oxidative transcriptional programmes and thus prevent vascular disease in obese individuals.


Asunto(s)
Regulación de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/genética , Metiltransferasas/genética , Coactivador 1 de Receptor Nuclear/genética , Obesidad/genética , Estrés Oxidativo/fisiología , Proteínas Represoras/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , N-Metiltransferasa de Histona-Lisina , Humanos , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Masculino , Metiltransferasas/biosíntesis , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Coactivador 1 de Receptor Nuclear/biosíntesis , Obesidad/metabolismo , Obesidad/patología , ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/biosíntesis , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/biosíntesis , Transcripción Genética , Vasodilatación
14.
EMBO Rep ; 18(6): 914-928, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28487353

RESUMEN

ATRX is a chromatin remodelling factor found at a wide range of tandemly repeated sequences including telomeres (TTAGGG)n ATRX mutations are found in nearly all tumours that maintain their telomeres via the alternative lengthening of telomere (ALT) pathway, and ATRX is known to suppress this pathway. Here, we show that recruitment of ATRX to telomeric repeats depends on repeat number, orientation and, critically, on repeat transcription. Importantly, the transcribed telomeric repeats form RNA-DNA hybrids (R-loops) whose abundance correlates with the recruitment of ATRX Here, we show loss of ATRX is also associated with increased R-loop formation. Our data suggest that the presence of ATRX at telomeres may have a central role in suppressing deleterious DNA secondary structures that form at transcribed telomeric repeats, and this may account for the increased DNA damage, stalling of replication and homology-directed repair previously observed upon loss of ATRX function.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN/genética , ARN/genética , Telómero/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Cromatina , ADN/química , Daño del ADN , Replicación del ADN , G-Cuádruplex , Humanos , Homeostasis del Telómero/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Proteína Nuclear Ligada al Cromosoma X/genética
15.
Hepatology ; 65(6): 1904-1919, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28244120

RESUMEN

Uncontrolled inflammatory response highlights the central theme of nonalcoholic steatohepatitis (NASH), a growing global pandemic. Hepatocytes and macrophages represent two major sources of hepatic inflammation during NASH pathogenesis, contributing to excessive synthesis of proinflammatory mediators. The epigenetic mechanism that accounts for the activation of hepatocytes and macrophages in this process remains obscure. Here, we report that compared to wild-type littermates, mice with a deficiency in the histone H3K9 methyltransferase suppressor of variegation 39 homolog 2 (Suv39h2, knockout) exhibited a less severe form of NASH induced by feeding with a high-fat, high-carbohydrate diet. Pro-NASH stimuli increased Suv39h2 expression in cell culture, in mice, and in human livers. In hepatocytes, Suv39h2 bound to the Sirt1 gene promoter and repressed Sirt1 transcription. Suv39h2 deficiency normalized Sirt1 expression, allowing nuclear factor kappa B/p65 to become hypoacetylated and thus dampening nuclear factor kappa B-dependent transcription of proinflammatory mediators. In macrophages, Suv39h2-mediated repression of peroxisome proliferator-activated receptor gamma transcription favored a proinflammatory M1 phenotype over an anti-inflammatory M2 phenotype, thereby elevating hepatic inflammation. CONCLUSION: Suv39h2 plays a pivotal role in the regulation of inflammatory response in hepatocytes and macrophages, contributing to NASH pathogenesis. (Hepatology 2017;65:1904-1919).


Asunto(s)
Dieta Alta en Grasa , N-Metiltransferasa de Histona-Lisina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Sirtuina 1/metabolismo , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Biopsia con Aguja , Western Blotting , Carcinoma Hepatocelular/parasitología , Carcinoma Hepatocelular/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Citometría de Flujo , Hepatocitos/metabolismo , Histona Metiltransferasas , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Valores de Referencia
16.
Genes Dev ; 23(22): 2625-38, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933152

RESUMEN

Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Factores de Transcripción/metabolismo , Animales , Linfocitos B/metabolismo , Línea Celular , Humanos , Factor 4 Similar a Kruppel , Ratones , Proteína Homeótica Nanog
17.
Nat Genet ; 39(2): 237-42, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17211412

RESUMEN

Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Genes Supresores de Tumor , Células Madre/metabolismo , Adulto , Proliferación Celular , Células Madre Embrionarias/metabolismo , Silenciador del Gen , Histonas/metabolismo , Humanos , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Células Tumorales Cultivadas
18.
Cancer Cell ; 11(6): 513-25, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17560333

RESUMEN

Epigenetic changes are common alterations in cancer cells. Here, we have investigated the role of Polycomb group proteins in the establishment and maintenance of the aberrant silencing of tumor suppressor genes during transformation induced by the leukemia-associated PML-RARalpha fusion protein. We show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA demethylation of PML-RARalpha target genes. This results in promoter reactivation and granulocytic differentiation. Importantly, the epigenetic alterations caused by PML-RARalpha can be reverted by retinoic acid treatment of primary blasts from leukemic patients. Our results demonstrate that the direct targeting of Polycomb group proteins by an oncogene plays a key role during carcinogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/fisiología , Proteínas de Fusión Oncogénica/fisiología , Proteínas Represoras/metabolismo , Diferenciación Celular , Metilación de ADN , Epigénesis Genética , Silenciador del Gen , Granulocitos/fisiología , Histonas , Humanos , Proteínas de Neoplasias , Proteínas de Fusión Oncogénica/genética , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Factores de Transcripción , Tretinoina/farmacología , Células Tumorales Cultivadas
19.
PLoS Genet ; 8(6): e1002750, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761581

RESUMEN

The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Línea Celular , Islas de CpG , Citosina/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Células Madre Embrionarias/citología , Epigénesis Genética , Ratones , ADN Metiltransferasa 3B
20.
EMBO J ; 29(15): 2538-52, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20588255

RESUMEN

MDM2 is a key regulator of the p53 tumor suppressor acting primarily as an E3 ubiquitin ligase to promote its degradation. MDM2 also inhibits p53 transcriptional activity by recruiting histone deacetylase and corepressors to p53. Here, we show that immunopurified MDM2 complexes have significant histone H3-K9 methyltransferase activity. The histone methyltransferases SUV39H1 and EHMT1 bind specifically to MDM2 but not to its homolog MDMX. MDM2 mediates formation of p53-SUV39H1/EHMT1 complex capable of methylating H3-K9 in vitro and on p53 target promoters in vivo. Furthermore, MDM2 promotes EHMT1-mediated p53 methylation at K373. Knockdown of SUV39H1 and EHMT1 increases p53 activity during stress response without affecting p53 levels, whereas their overexpression inhibits p53 in an MDM2-dependent manner. The p53 activator ARF inhibits SUV39H1 and EHMT1 binding to MDM2 and reduces MDM2-associated methyltransferase activity. These results suggest that MDM2-dependent recruitment of methyltransferases is a novel mechanism of p53 regulation through methylation of both p53 itself and histone H3 at target promoters.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Represoras/genética , Estrés Fisiológico , Transcripción Genética , Proteína p53 Supresora de Tumor/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA