Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(2): 2725-2736, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598373

RESUMEN

Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).


Asunto(s)
Micelas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Cemento de Policarboxilato , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Línea Celular Tumoral , Portadores de Fármacos/química , Polietilenglicoles/química
2.
Front Microbiol ; 14: 1277320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840706

RESUMEN

Background: Colistin has emerged as a last-resort therapeutic against antibiotic-resistant bacterial infections, particularly those attributed to carbapenem-resistant Enterobacteriaceae (CRE) like CRKP. Yet, alarmingly, approximately 45% of multidrug-resistant Klebsiella pneumoniae strains now manifest resistance to colistin. Through our study, we discerned that the synergy between carbapenemase and IS elements amplifies resistance in Klebsiella pneumoniae, thereby narrowing the existing therapeutic avenues. This underscores the instrumental role of IS elements in enhancing colistin resistance through mgrB disruption. Methods: From 2021 to 2023, 127 colistin-resistant Klebsiella pneumoniae isolates underwent meticulous examination. We embarked on an exhaustive genetic probe, targeting genes associated with both plasmid-mediated mobile resistance-encompassing blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48-like, and mcr-1 to mcr-8-and chromosome-mediated resistance systems, including PhoP/Q, PmrA/B, and mgrB. PCR amplification revealed the presence of virulence-associated genes from the pLVPK plasmid, such as rmpA, rmpA2, iucA, iroB, and peg344. mgrB sequencing was delegated to Sangon Biotech, Shanghai, and the sequences procured were validated using BLAST. Our search for IS elements was navigated through the IS finder portal. Phenotypically, we harnessed broth microdilution (BMD) to ascertain the MICs of colistin. To sketch the clonal lineage of mgrB-mutated CoR-Kp isolates, sophisticated methodologies like MLST and PFGE were deployed. S1-PFGE unraveled the intrinsic plasmids in these isolates. Our battery of virulence assessment techniques ranged from the string test and capsular serotyping to the serum killing assay and the Galleria mellonella larval infection model. Results: Among the 127 analyzed isolates, 20 showed an enlarged mgrB PCR amplicon compared to wild-type strains. These emerged over a three-year period: three in 2021, thirteen in 2022, and four in 2023. Antimicrobial susceptibility tests revealed that these isolates consistently resisted several drugs, notably TCC, TZP, CAZ, and COL. Additionally, 85% resisted both DOX and TOB. The MICs for colistin across these strains ranged between 16 to 64 mg/L, with a median of 40 mg/L. From a genetic perspective, MLST unanimously categorized these mgrB-mutated CoR-hvKp isolates as ST11. PFGE further delineated them into six distinct clusters, with clusters A and D being predominant. This distribution suggests potential horizontal and clonal genetic transmission. Intriguingly, every mgrB-mutated CoR-hvKP isolate possessed at least two virulence genes akin to the pLVPK-like virulence plasmid, with iroB and rmpA2 standing out. Their virulence was empirically validated both in vitro and in vivo. A pivotal discovery was the identification of three distinct insertion sequence (IS) elements within or near the mgrB gene. These were:ISKpn26 in eleven isolates, mainly in cluster A, with various insertion sites including +74, +125, and an upstream -35.ISKpn14 in four isolates with insertions at +93, -35, and two upstream at -60.IS903B present in five isolates, marking positions like +74, +125, +116, and -35 in the promoter region. These diverse insertions, spanning six unique locations in or near the mgrB gene, underscore its remarkable adaptability. Conclusion: Our exploration spotlights the ISKpn element's paramount role in fostering mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Employing MLST and PFGE, we unearthed two primary genetic conduits: clonal and horizontal. A striking observation was the ubiquitous presence of the KPC carbapenemase gene in all the evaluated ST11 hypervirulent colistin-resistant Klebsiella pneumoniae strains, with a majority also harboring the NDM gene. The myriad mgrB gene insertion locales accentuate its flexibility and the overarching influence of IS elements, notably the pervasive IS5-like variants ISKpn26 and IS903B. Our revelations illuminate the escalating role of IS elements in antibiotic resistance within ST11 hypervirulent colistin-resistant Klebsiella pneumoniae, advocating for innovative interventions to counteract these burgeoning resistance paradigms given their profound ramifications for prevailing treatment modalities.

3.
Biomater Sci ; 9(18): 6108-6115, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369491

RESUMEN

Nanomedicines have been widely used in the effective delivery of chemotherapeutic drugs due to their advantages such as increasing the half-life of drugs, selectively targeting tumor tissues, and thus reducing systemic toxicity. However, the low drug entrapment rate and the difficulty of real-controlled release at tumor sites hinder their further clinical translations. Here we have developed biodegradable polyionic micelles (PD-M) to facilitate black phosphorus (BP) encapsulation (PD-M@BP) for improved drug loading. With the introduction of BP, PTX-loaded PD-M@BP (PD-M@BP/PTX) with sizes of 124-162 nm exhibited superior encapsulation efficiency over 94% and excellent colloidal stability. Meanwhile, PD-M well protected BP from fast degradation to show the good photothermal performance under near-infrared (NIR) irradiation, thus achieving the remotely controlled fast PTX release due to micelle core melting and dissociation, accompanied by the synergistic photothermal tumor therapy. The in vivo results demonstrated that the PD-M@BP/PTX nanosystem not only realized significant inhibition of multi-drug resistant (MDR) cervical tumors (HeLa/PTXR tumor) by remote NIR-regulation, but also reduced the potential damage of chemotherapeutic drugs to the whole body, rendering these hybrid nanosystems as great tools to treat MDR tumors synergistically.


Asunto(s)
Micelas , Neoplasias , Preparaciones de Acción Retardada , Humanos , Nanomedicina , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA