Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nature ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898282

RESUMEN

Graphene-based, high-quality, two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity1-21. Specifically, superconductivity has been observed in both electron- and hole-doped twisted graphene moiré systems1-17, whereas in crystalline graphene systems, superconductivity has so far been observed only in hole-doped rhombohedral trilayer graphene (RTG)18 and hole-doped Bernal bilayer graphene (BBG)19-21. Recently, enhanced superconductivity has been demonstrated20,21 in BBG because of the proximity to a monolayer WSe2. Here we report the observation of superconductivity and a series of flavour-symmetry-breaking phases in electron- and hole-doped BBG/WSe2 devices by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when the applied electric fields drive the BBG electron or hole wavefunctions towards the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. The hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. By contrast, the electron-doped superconductivity obeys the Pauli limit, although the proximity-induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of superconductor devices based on BBG.

2.
Nature ; 628(8009): 758-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538800

RESUMEN

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

3.
Nano Lett ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917425

RESUMEN

The interfacial FeSe/TiO2-δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)-(√13 × âˆš13)-R33.7° surface. Our results disclosed the out-of-plane Se-Fe-Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × âˆš13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle-hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

4.
Nano Lett ; 23(21): 9704-9710, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37870505

RESUMEN

Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.

5.
J Am Chem Soc ; 145(13): 7136-7146, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951172

RESUMEN

The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.

6.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37874974

RESUMEN

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

7.
Nano Lett ; 22(18): 7651-7658, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36066512

RESUMEN

The metal-intercalated bilayer graphene has a flat band with a high density of states near the Fermi energy and thus is anticipated to exhibit an enhanced strong correlation effect and associated fascinating phenomena, including superconductivity. By using a self-developed multifunctional scanning tunneling microscope, we succeeded in observing the superconducting energy gap and diamagnetic response of a Ca-intercalated bilayer graphene below a critical temperature of 8.83 K. The revealed high value of gap ratio, 2Δ/kBTc ≈ 5.0, indicates a strong coupling superconductivity, while the variation of penetration depth with temperature and magnetic field indicates an isotropic s-wave superconductor. These results provide crucial experimental clues for understanding the origin and mechanism of superconductivity in carrier-doped graphene.

8.
Phys Rev Lett ; 128(20): 206802, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657877

RESUMEN

High-quality stanene films have been actively pursued for realizing not only quantum spin Hall edge states without backscattering, but also intrinsic superconductivity, two central ingredients that may further endow the systems to host topological superconductivity. Yet to date, convincing evidence of topological edge states in stanene remains to be seen, let alone the coexistence of these two ingredients, owing to the bottleneck of growing high-quality stanene films. Here we fabricate one- to five-layer stanene films on the Bi(111) substrate and observe the robust edge states using scanning tunneling microscopy/spectroscopy. We also measure distinct superconducting gaps on different-layered stanene films. Our first-principles calculations further show that hydrogen passivation plays a decisive role as a surfactant in improving the quality of the stanene films, while the Bi substrate endows the films with nontrivial topology. The coexistence of nontrivial topology and intrinsic superconductivity renders the system a promising candidate to become the simplest topological superconductor based on a single-element system.

9.
Phys Rev Lett ; 128(10): 106802, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35333064

RESUMEN

By combining angle-resolved photoemission spectroscopy, scanning tunneling microscopy, atomic force microscope based piezoresponse force microscopy and first-principles calculations, we have studied the low-energy band structure, atomic structure, and charge polarization on the surface of a topological semimetal candidate TaNiTe_{5}. Dirac-like surface states were observed on the (010) surface by angle-resolved photoemission spectroscopy, consistent with the first-principles calculations. On the other hand, piezoresponse force microscopy reveals a switchable ferroelectriclike polarization on the same surface. We propose that the noncentrosymmetric surface relaxation observed by scanning tunneling microscopy could be the origin of the observed ferroelectriclike state in this novel material. Our findings provide a new platform with the coexistence of a ferroelectriclike surface charge distribution and novel surface states.

10.
Phys Rev Lett ; 126(17): 176102, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988396

RESUMEN

Deposition of Bi on InSb(111)B reveals a striking Sierpinski-triangle (ST)-like structure in Bi thin films. Such a fractal geometric topology is further shown to turn off the intrinsic electronic topology in a thin film. Relaxation of a huge misfit strain of about 30% to 40% between Bi adlayer and substrate is revealed to drive the ST-like island formation. A Frenkel-Kontrova model is developed to illustrate the enhanced strain relief in the ST islands offsetting the additional step energy cost. Besides a sufficiently large tensile strain, forming ST-like structures also requires larger adlayer-substrate and intra-adlayer elastic stiffnesses, and weaker intra-adlayer interatomic interactions.

11.
Phys Rev Lett ; 127(23): 236401, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936772

RESUMEN

Quantum materials with layered kagome structures have drawn considerable attention due to their unique lattice geometry, which gives rise to flat bands together with Dirac-like dispersions. Recently, vanadium-based materials with layered kagome structures were discovered to be topological metals, which exhibit charge density wave (CDW) properties, significant anomalous Hall effect, and unusual superconductivity at low temperatures. Here, we employ angle-resolved photoemission spectroscopy to investigate the electronic structure evolution upon the CDW transition in a vanadium-based kagome material RbV_{3}Sb_{5}. The CDW phase transition gives rise to a partial energy gap opening at the boundary of the Brillouin zone and, most importantly, the emergence of new van Hove singularities associated with large density of states, which are absent in the normal phase and might be related to the superconductivity observed at lower temperatures. Our work sheds light on the microscopic mechanisms for the formation of the CDW and superconducting states in these topological kagome metals.

12.
J Am Chem Soc ; 142(43): 18532-18540, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32959653

RESUMEN

The porphyrin macrocycle can stabilize a set of magnetic metal ions, thus introducing localized net spins near the center. However, it remains elusive but most desirable to introduce delocalized spins in porphyrins with wide implications, for example, for building correlated quantum spins. Here, we demonstrate that metal-free porphyrins host delocalized π-electron magnetism, as revealed by scanning probe microscopy and a different level of theory calculations. Our results demonstrate that engineering of π-electron topologies introduces a spin-polarized singlet state and delocalized net spins in metal-free porphyrins. In addition, the π-electron magnetism can be switched on/off via scanning tunneling microscope manipulation by tuning the interfacial charge transfer. Our results provide an effective way to precisely control the π-electron magnetism in metal-free porphyrins, which can be further extended to design new magnetic functionalities of porphyrin-based architectures.

13.
J Am Chem Soc ; 142(22): 10034-10041, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32372644

RESUMEN

The quinoid structure, a resonance structure of benzenoid, gives rise to peculiar chemical reactivity and physical properties. A complete characterization of its geometric and electronic properties on the atomic scale is of vital importance to understand and engineer the chemical and physical properties of quinoid molecules. Here, we report a real-space structural and electronic characterization of quinoid poly(para-phenylene) (PPP) chains by using noncontact atomic force microscopy and scanning tunneling microscopy. Our results reveal that quinoid PPP chains adopt a coplanar adsorption configuration on Cu(111) and host in-gap states near Fermi level. In addition, intra- and interchain hopping of quinoid structure are observed, indicative of a quasiparticle behavior originating from charge-lattice interactions. The experimental results are nicely reproduced by tight-binding calculations. Our study provides a comprehensive understanding of the structural and electronic properties of quinoid PPP chains in real space and may be further extended to address the dynamics of nonlinear excitations in quinoid molecules.

14.
Phys Rev Lett ; 125(4): 046801, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794806

RESUMEN

A quantum spin hall insulator is manifested by its conducting edge channels that originate from the nontrivial topology of the insulating bulk states. Monolayer 1T^{'}-WTe_{2} exhibits this quantized edge conductance in transport measurements, but because of its semimetallic nature, the coherence length is restricted to around 100 nm. To overcome this restriction, we propose a strain engineering technique to tune the electronic structure, where either a compressive strain along the a axis or a tensile strain along the b axis can drive 1T^{'}-WTe_{2} into an full gap insulating phase. A combined study of molecular beam epitaxy and in situ scanning tunneling microscopy or spectroscopy then confirmed such a phase transition. Meanwhile, the topological edge states were found to be very robust in the presence of strain.

15.
Phys Rev Lett ; 125(13): 136802, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034492

RESUMEN

Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of ∼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.

16.
Phys Rev Lett ; 124(14): 147206, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338972

RESUMEN

Nanographenes with sublattice imbalance host a net spin according to Lieb's theorem for bipartite lattices. Here, we report the on-surface synthesis of atomically precise nanographenes and their atomic-scale characterization on a gold substrate by using low-temperature noncontact atomic force microscopy and scanning tunneling spectroscopy. Our results clearly confirm individual nanographenes host a single spin of S=1/2 via the Kondo effect. In covalently linked nanographene dimers, two spins are antiferromagnetically coupled with each other as revealed by inelastic spin-flip excitation spectroscopy. The magnetic exchange interaction in dimers can be well engineered by tuning the local spin density distribution near the connection region, consistent with mean-field Hubbard model calculations. Our work clearly reveals the emergence of magnetism in nanographenes and provides an efficient way to further explore the carbon-based magnetism.

17.
Nanotechnology ; 31(30): 305708, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32259801

RESUMEN

Low dimensional superconductors have many unusual properties. When 0-dimensional superconductors reach the nanometer scale, the superconducting energy gap can be enhanced due to the shell effect. At the same time, the single electron Coulomb blockade effect can also be observed on metal nanoparticles if they are weakly coupled to the environment. So, if a superconducting nanoparticle is isolated well from the environment, the superconducting gap and the Coulomb gap would couple together, making the tunneling spectrum more complicated and interesting. Here Sn nanoparticles were deposited on the surface of STO (111). The charging energy of a nanoparticle mainly depends on its size and is comparable to the superconducting gap when the isolated particle is large enough. The superconducting energy gap can be deduced from the coupling tunneling spectrum and the shell effect is observed. The method to deduce the superconducting gap here is simpler than when fit using the Dynes density of states. Owing to the increased superconducting gap and critical field, the studied nanoparticles may find applications in studies of the properties of Majorana fermions.

18.
Phys Rev Lett ; 123(25): 257001, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31922797

RESUMEN

Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.

19.
Chemphyschem ; 20(18): 2394-2397, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31025456

RESUMEN

On-surface synthesis provides a convenient route to many kinds of conjugated molecular nanostructures, but it has remained challenging to precisely control the reaction pathway for using multicomponent precursors. Herein, we demonstrate a two-step strategy to synthesize iron phthalocyanine (FePc) molecules using metal-organic coordination for templating by using high-resolution scanning tunnelling microscopy and non-contact atomic force microscopy. In a first step, 1,2,4,5-tetracyanobenzene (TCNB) precursors and Fe atoms self-assembly into Fe(TCNB)4 coordination complexes on a clean Au(111) surface. The Fe(TCNB)4 complexes further undergo cyclic tetramerization upon thermal annealing, forming single FePc molecules. We expect that our demonstrated synthetic strategy may shed light on the design and synthesis of two-dimensional extended conjugated systems.

20.
Phys Rev Lett ; 120(9): 097001, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29547312

RESUMEN

Single monolayer FeSe film grown on a Nb-doped SrTiO_{3}(001) substrate shows the highest superconducting transition temperature (T_{C}∼100 K) among the iron-based superconductors (iron pnictides), while the T_{C} value of bulk FeSe is only ∼8 K. Although bulk FeSe does not show antiferromagnetic order, calculations suggest that the parent FeSe/SrTiO_{3} films are antiferromagnetic. Experimentally, because of a lack of a direct probe, the magnetic state of FeSe/SrTiO_{3} films remains mysterious. Here, we report direct evidence of antiferromagnetic order in the parent FeSe/SrTiO_{3} films by the magnetic exchange bias effect measurements. The magnetic blocking temperature is ∼140 K for a single monolayer film. The antiferromagnetic order disappears after electron doping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA