Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(9): 252, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587272

RESUMEN

White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.


Asunto(s)
Metabolismo de los Lípidos , MicroARNs , Animales , Ratones , Metabolismo de los Lípidos/genética , Lípidos , MicroARNs/genética , Obesidad/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Circular/genética , Serina-Treonina Quinasas TOR/genética , Proteína Desacopladora 1
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255968

RESUMEN

Recently, the trend of obesity is becoming increasingly prevalent, and the underlying pathogenesis of obesity is complex and needs to be researched further. In this study, we report a decreased expression of let-7a-5p in the white adipose tissue (WAT) of animals with obesity. Using the RNA oligo, let-7a-5p over-expression or suppression-expression is achieved, impacting the proliferation and differentiation of preadipocytes in vitro. Srebf2 mechanistically interacts with the metabolic effect of let-7a-5p and participates in lipid accumulation by regulating Srebf2 downstream signaling. Moreover, let-7a-5p binds to Thbs1 to interact with the PI3K-AKT-mTOR pathway, down-regulating the phosphorylation levels of AKT, mTOR, and S6K1 to decrease lipid accumulation. In conclusion, our study highlights the physiological significance of let-7a-5p in lipid accumulation and suggests that the let-7a-5p/Srebf2 and let-7a-5p/Thbs1/PI3K-AKT-mTOR axes may represent potential mechanisms for controlling lipid accumulation in obesity.


Asunto(s)
Metabolismo de los Lípidos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Obesidad , Serina-Treonina Quinasas TOR
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138996

RESUMEN

Obesity has become increasingly prevalent in recent years, and there is a need for a deeper understanding of the complex pathogenesis underlying the obesity condition. Therefore, the objective of this study was to investigate how a high-fat diet (HFD) affects protein expression in a female-rabbit model compared to a standard normal-diet group (SND), to gain comprehensive insights into the molecular mechanisms involved in obesity. To achieve this objective, a tandem mass tag (TMT)-based quantitative proteomics analysis was conducted to examine the molecular changes occurring in the white adipose tissue (WAT) from the HFD and SND groups. The sequencing results identified a total of 4215 proteins, among which 151 proteins exhibited significant differential expression. Specifically, there were 85 upregulated proteins and 66 downregulated proteins in the HFD group compared to the SND group. Further analysis of these differentially expressed proteins (DEPs) revealed their involvement in crucial biological processes, including energy metabolism, hormonal regulation, and inflammatory response. In conclusion, this study sheds light on the impact of HFD on protein expression in a female-rabbit model, providing new insights into the molecular mechanisms underlying obesity and the associated metabolic disorders.


Asunto(s)
Obesidad , Proteómica , Animales , Conejos , Femenino , Ratones , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasa Intraabdominal/metabolismo , Ratones Endogámicos C57BL
4.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958699

RESUMEN

Obesity, a major global health issue, is increasingly associated with the integral role of long non-coding RNA (lncRNA) in adipogenesis. Recently, we found that lncRNA-MSTRG4710 was highly expressed in the liver of rabbits fed a high-fat diet, but whether it is involved in lipid metabolism remains unclear. A series of experiments involving CCK-8, EDU, qPCR, and Oil Red O staining demonstrated that the overexpression of MSTRG4710 stimulated the proliferation and differentiation of preadipocytes while its knockdown inhibited these processes. Bioinformatics analysis showed that miR-29b-3p was a potential target gene of MSTRG4710, and IGF1 was a downstream target gene of miR-29b-3p. Luciferase reporter gene analysis and qPCR analysis confirmed that miR-29b-3p was a potential target gene of MSTRG4710, and miR-29b-3p directly targeted the 3'UTR of IGF1. The overexpression of miR-29b-3p was observed to regulate IGF1 protein and mRNA levels negatively. Additionally, a total of 414 known differentially expressed genes between the miR-29b-3p mimic, miR-29b-3p negative control (NC), siMSTRG4710, and siMSTRG4710-NC group were screened via transcriptome sequencing technology. The GO- and KEGG-enriched pathways were found to be related to lipid metabolism. The study also established that miR-29b-3p targets IGF1 to inhibit preadipocyte proliferation and differentiation. Notably, IGF1 knockdown significantly reduced preadipocyte proliferation and differentiation. Furthermore, co-transfection of pcDNA3.1(+)-MSTRG4710 and mimics into rabbit preadipocytes revealed that the mimics reversed the promotional effect of pcDNA3.1(+)-MSTRG4710. In conclusion, these results uncover that MSTRG4710 positively regulated cell proliferation and adipogenesis by the miR-29b-3p/IGF1 axis. Our findings might provide a new target for studying adipogenesis in rabbit preadipocytes and obesity.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Conejos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Obesidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA