RESUMEN
BACKGROUND: As the most abundant epigenetic modification of eukaryotic mRNA, N6-methyladenosine (m6A) modification has been shown to play a role in mammalian nervous system development and function by regulating mRNA synthesis and degeneration. However, the role of m6A modification in retinal photoreceptors remains unknown. RESULTS: We generated the first retina-specific Mettl14-knockout mouse models using the Rho-Cre and HRGP-Cre lines and investigated the functions of Mettl14 in retinal rod and cone photoreceptors. Our data showed that loss of Mettl14 in rod cells causes a weakened scotopic photoresponse and rod degeneration. Further study revealed the ectopic accumulation of multiple outer segment (OS) proteins in the inner segment (IS). Deficiency of Mettl14 in cone cells led to the mislocalization of cone opsin proteins and the progressive death of cone cells. Moreover, Mettl14 depletion resulted in drastic decreases in METTL3/WTAP levels and reduced m6A methylation levels. Mechanistically, transcriptomic analyses in combination with MeRIP-seq illustrated that m6A depletion via inactivation of Mettl14 resulted in reduced expression levels of multiple phototransduction- and cilium-associated genes, which subsequently led to compromised ciliogenesis and impaired synthesis and transport of OS-residing proteins in rod cells. CONCLUSIONS: Our data demonstrate that Mettl14 plays an important role in regulating phototransduction and ciliogenesis events and is essential for photoreceptor function and survival, highlighting the importance of m6A modification in visual function.
Asunto(s)
Metiltransferasas/metabolismo , Células Fotorreceptoras de Vertebrados , Retina , Animales , Mamíferos/genética , Metilación , Metiltransferasas/genética , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas ConosRESUMEN
N6-Methyladenosine (m6A) is the most prevalent internal modification in messenger RNAs (mRNAs) of eukaryotes and plays a vital role in post-transcriptional regulation. Recent studies demonstrated that m6A is essential for the normal function of the central nervous system (CNS), and the deregulation of m6A leads to a series of CNS diseases. However, the functional consequences of m6A deficiency within the dopaminergic neurons of adult brain are elusive. To evaluate the necessity of m6A in dopaminergic neuron functions, we conditionally deleted Mettl14, one of the most important part of m6A methyltransferase complexes, in the substantia nigra (SN) region enriched with dopaminergic neurons. By using rotarod test, pole test, open-field test and elevated plus maze, we found that the deletion of Mettl14 in the SN region induces impaired motor function and locomotor activity. Further molecular analysis revealed that Mettl14 deletion significantly reduced the total level of m6A in the mRNA isolated from SN region. Tyrosine hydroxylase (TH), an essential enzyme for dopamine synthesis, was also down-regulated upon Mettl14 deletion, while the activation of microglia and astrocyte was enhanced. Moreover, the expression of three essential transcription factors in the regulation of TH including Nurr1, Pitx3 and En1, with abundant m6A-binding sites on their RNA 3'-untranslated regions (UTR), was significantly decreased upon Mettl14 deletion in SN. Our finding first confirmed the significance of m6A in maintaining normal dopaminergic function in the SN of adult mouse.
Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Neuronas Dopaminérgicas , Metiltransferasas/fisiología , Sustancia Negra , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Ratones Endogámicos C57BL , Sustancia Negra/metabolismo , Sustancia Negra/patologíaRESUMEN
Spot-size converter (SSC) is an essential building block for integrated photonic circuits applied as a mode transformer between optical components. One typical issue for SSC is the difficulty of broadening the vertical field profile. Herein, we propose a nanopixel SSC (1 × 2 µm2) with changing hole size and density. Unlike a typical SSC, this configuration controls both the lateral and vertical field profiles relatively easily by enhancing the nanopixel density. A vertical field expansion of 1.21 µm was obtained by enhancing the nanopixel density. In addition, we designed the optical field in the lateral direction using deep neural network (DNN)-based learning to realize a perfect circular spot for high coupling efficiency that reached -3 dB at λ0 = 1.572 µm when the optical field aspect ratio was adjusted to 1 after training for 200 epochs. Furthermore, the vertical expansion was increased from 1.21 to 4.9 µm and the coupling efficiency from -3 to -0.41 dB by combining it a silicon dioxide window structure (5 × 15 × 10 µm3). The 1-dB operating bandwidth of the designed SSC structure is 100 nm (1.5-1.6 µm), while fabrication tolerance of the nanopixels and window structure length for the designed SSC structure are ±15 nm and ±250 nm when the coupling efficiency drops by 1 dB.
RESUMEN
Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.
Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/fisiología , Enfermedades Neurodegenerativas/patología , Norepinefrina/metabolismo , Factores de Edad , Animales , Conducta Animal , Neuronas Dopaminérgicas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Mutación , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
Mutations in a number of genes cause familial forms of Parkinson's disease (PD), including mutations in the vacuolar protein sorting 35 ortholog (VPS35) and parkin genes. In this study, we identify a novel functional interaction between parkin and VPS35. We demonstrate that parkin interacts with and robustly ubiquitinates VPS35 in human neural cells. Familial parkin mutations are impaired in their ability to ubiquitinate VPS35. Parkin mediates the attachment of an atypical poly-ubiquitin chain to VPS35 with three lysine residues identified within the C-terminal region of VPS35 that are covalently modified by ubiquitin. Notably, parkin-mediated VPS35 ubiquitination does not promote the proteasomal degradation of VPS35. Furthermore, parkin does not influence the steady-state levels or turnover of VPS35 in neural cells and VPS35 levels are normal in the brains of parkin knockout mice. These data suggest that ubiquitination of VPS35 by parkin may instead serve a non-degradative cellular function potentially by regulating retromer-dependent sorting. Accordingly, we find that components of the retromer-associated WASH complex are markedly decreased in the brain of parkin knockout mice, suggesting that parkin may modulate WASH complex-dependent retromer sorting. Parkin gene silencing in primary cortical neurons selectively disrupts the vesicular sorting of the autophagy receptor ATG9A, a WASH-dependent retromer cargo. Parkin is not required for dopaminergic neurodegeneration induced by the expression of PD-linked D620N VPS35 in mice, consistent with VPS35 being located downstream of parkin function. Our data reveal a novel functional interaction of parkin with VPS35 that may be important for retromer-mediated endosomal sorting and PD.
Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Proteínas de la Membrana/genética , Degeneración Nerviosa/genética , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Transporte Vesicular/genética , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Endosomas/genética , Humanos , Ratones , Ratones Noqueados , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Poliubiquitina/genética , Transporte de Proteínas/genéticaRESUMEN
α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson's disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson's disease, there is evidence that parkin is inactivated in sporadic Parkinson's disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson's disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson's disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson's disease and related α-synucleinopathies.
Asunto(s)
Enfermedad de Parkinson/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedad de Parkinson/patologíaRESUMEN
Breath sensing is an effective tool for health monitoring. Previously, high-mesa waveguide structures have been proposed by our group for realizing a compact breath-sensing photonic circuit. By using the doped SiO2 as the waveguide core, 50% concentration CO2 has been detected. One issue of preventing parts per million (ppm)-order detection is the low portion of evanescent light (Γair=2.2%) in the doped SiO2 waveguides. In order to realize low propagation loss α and high Γair simultaneously, thin silicon (Si) waveguides with a Γair as high as 37.6% have been proposed and fabricated in this work. A thermal oxidation technique was applied to further reduce α, so that α was decreased from 1.45 to 0.84 and 0.29 to 0.2 dB/cm for the 0.5 and 3-µm-wide waveguide, respectively. According to our analysis, the significantly decreased α is attributed to recovering the damaged Si core and smoothing the waveguide sidewalls. The high Γair and effective loss reduction show a promising potential of applying Si high-mesa waveguides to realize ppm-order sensing.
RESUMEN
BACKGROUND: Exosomes are nano-sized extracellular vesicles secreted by most cell types and abundantly present in body fluids, including blood, saliva, urine, cerebrospinal fluid, and breast milk. Exosomes can spread toxic amyloid-beta (Aß) and hyperphosphorylated tau between cells, contributing to neuronal loss in Alzheimer's disease (AD). OBJECTIVE: To explore changes in the morphology, number, and pathological protein levels of urinary exosomes in AD patients compared with age-matched healthy subjects. METHODS: In this study, enzyme-linked immunosorbent assay was used to detect the levels of Aß1-42 and P-S396-tau (normalized by CD63) in urinary exosomes of AD patients and matched healthy subjects. We used transmission electron microscopy and nanoparticle tracking analysis to observe the exosomes. RESULTS: We found that the levels of Aß1-42 and P-S396-tau in the urinary exosomes of AD patients were higher than those of matched healthy controls. Exosomes taken from AD patients were more numerous. CONCLUSION: The differences in levels of Aß1-42 and P-S396-tau and the quantity of urinary exosomes between AD patients and healthy controls may provide a basis for early diagnosis of AD.
Asunto(s)
Enfermedad de Alzheimer/orina , Exosomas/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/orina , Biomarcadores/orina , Encéfalo/diagnóstico por imagen , Ensayo de Inmunoadsorción Enzimática , Exosomas/ultraestructura , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión , Fragmentos de Péptidos/orina , Proyectos Piloto , Proteínas tau/orinaRESUMEN
Mutations in parkin lead to early-onset autosomal recessive Parkinson's disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α-dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death.
Asunto(s)
Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Muerte Celular , Línea Celular Tumoral , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Consumo de Oxígeno , Enfermedad de Parkinson/metabolismo , Proteínas Represoras/fisiología , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Background: N6-methyladenosine (m6A) is the most frequently occurring interior modification in eukaryotic messenger RNA (mRNA), and abnormal mRNA modifications can affect many biological processes. However, m6A's effect on the metabolism of antiplatelet drugs for the prevention of ischemic stroke (IS) remains largely unclear. Methods: We analyzed the m6A enzymes and m6A methylation in peripheral blood samples of IS patients with/without clopidogrel resistance (CR), and the peripheral blood and liver of rat models with/without CR. We also compared the effect of m6A methylation on the expression of the drug-metabolizing enzymes (CYP2C19 and CYP2C6v1) in CR and non-CR samples. Results: Methyltransferase-like 3 (METTL3), an m6A enzyme, was highly expressed in the peripheral blood of patients with CR, and in both the peripheral blood and liver of rats with CR. This enzyme targets CYP2C19 or CYP2C6v1 mRNA through m6A methylation, resulting in low expression of CYP2C19 or CYP2C6v1 mRNA. Consequently, this leads to decreased clopidogrel metabolism and CR. Conclusion: The METTL3-mediated methylation of CYP2C19 mRNA may aggravate CR in IS patients.
RESUMEN
Congenital cataracts cause 10-30% of all blindness in children, with one-third of cases estimated to have a genetic cause. Lamellar cataract is the most common type of infantile cataract. We carried out whole-genome linkage analysis of Chinese individuals with lamellar cataract, and found that the disorder is associated with inheritance of a 5.11-cM locus on chromosome 16. This locus coincides with one previously described for Marner cataract. We screened individuals of three Chinese families for mutations in HSF4 (a gene at this locus that encodes heat-shock transcription factor 4) and discovered that in each family, a distinct missense mutation, predicted to affect the DNA-binding domain of the protein, segregates with the disorder. We also discovered an association between a missense mutation and Marner cataract in an extensive Danish family. We suggest that HSF4 is critical to lens development.
Asunto(s)
Catarata/genética , Proteínas de Unión al ADN/genética , Mutación Missense , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Catarata/congénito , Preescolar , Cromosomas Humanos Par 16 , Secuencia Conservada , Femenino , Ligamiento Genético , Genoma Humano , Factores de Transcripción del Choque Térmico , Humanos , Lactante , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de AminoácidoRESUMEN
Exosomes are nanoscale small vesicles (EVs) secreted by cells that carry important bio information, including proteins, miRNAs, and more. Exosome contents are readily present in body fluids, including blood, and urine of humans and animals, and thereby act as markers of diseases. In patients with Parkinson's disease (PD), exosomes may spread alpha-synuclein and miR-184 between the cells contributing to dopaminergic neuronal loss. In this study, we detected the levels of miR-184 in urine-excreted neuronal exosomes between PD patients and age-matched healthy subjects by qRT-PCR analysis. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were also used to determine the ultracellular structures of exosomes nanoparticles. MPP + and MPTP were used to construct the cell and animal PD model. Behavioral tests were used to detect motor performance. Furthermore, the cytological experiments were measured to examine the relationship between miR-184 and ZNF865. We found that the levels of miR-184 in urine-derived neuronal exosomes from PD patients were higher, compared to aged-matched normal people. The exosomes from PD patients were larger with greater numbers than those from the age-matched healthy subjects. The difference in miR-184 in urinary exosomes between PD patients and normal people may provide a novel perspective for early diagnosis of PD. However, no difference in CD63 level was observed in Exo-control and Exo-PD groups (exosome from control or PD groups). Moreover, ZNF865 was detected as the targeted gene of miR-184. In addition, miR-184 ASO (miR-184 antisense oligodeoxynucleotide, miR-184 ASO) could rescue the damage of neuronal apoptosis and motor performance in PD mice. Our results showed the miR-184 potential to function as a diagnostic marker of PD.
RESUMEN
OBJECTIVES: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. Previously, rare mutations in low-density lipoprotein receptor (LDLR) genes and apolipoprotein A V (APOA5) have been shown to contribute to MI risk in individual families. Exosomes provide a potential source of biomarkers for MI. This study is to determine the role of LDLR and APOA5 as biomarkers for early diagnosis of MI. METHODS: In this study, we detected the levels of LDLR, APOA5, and cardiac troponin T in plasma-derived exosomes in MI patients and age-matched healthy people by enzyme linked immunosorbent assay and observed the morphology and number of exosomes using transmission electron microscope and nanoparticle tracking analysis. Oxygen-glucose deprivation (OGD) method was used to induce MI in H9C2 cardiomyocytes to explore the effect of exosomes. RESULTS: We found that the levels of LDLR and APOA5 in plasma-derived exosomes in MI patients were significantly decreased. Furthermore, exosomes of MI patients were significantly larger in size and the concentration of exosomes was higher than that of age-matched non-MI people. In vitro experiments showed that OGD treatment induced apoptosis of myocardial cells and decreased the expression of LDLR and APOA5, while addition of exosomes isolated from healthy people rescued these phenotypes. CONCLUSION: Exosomal APOA5 and LDLR are intimately associated with MI, and thereby have the potential to function as diagnostic markers of MI.
Asunto(s)
Apolipoproteína A-V , Exosomas , Lipoproteínas LDL , Infarto del Miocardio , Apolipoproteína A-V/sangre , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Apolipoproteínas/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Exosomas/metabolismo , Humanos , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Infarto del Miocardio/sangre , Infarto del Miocardio/metabolismoRESUMEN
N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in eukaryotes. As one of the most common epigenetic mechanisms, m6A's role in the development of atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein, we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders, hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD. Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD, which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and therapeutic target for AS and AD.
RESUMEN
Background: Recent evidence of genetics and metabonomics indicated a potential role of apolipoprotein M (ApoM) in the pathogenesis of Alzheimer's disease (AD). Here, we aimed to investigate the association between plasma ApoM with AD. Methods: A multicenter, cross-sectional study recruited patients with AD (n = 67), age- and sex-matched cognitively normal (CN) controls (n = 73). After the data collection of demographic characteristics, lifestyle risk factors, and medical history, we examined and compared the plasma levels of ApoM, tau phosphorylated at threonine 217 (p-tau217) and neurofilament light (NfL). Multivariate logistic regression analysis was applied to determine the association of plasma ApoM with the presence of AD. The correlation analysis was used to explore the correlations between plasma ApoM with cognitive function [Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)], activities of daily living (ADL), and the representative blood-based biomarkers (plasma p-tau217 and NfL). Receiver operating characteristic (ROC) analysis and Delong's test were used to determine the diagnostic power of plasma ApoM. Results: Plasma ApoM and its derived indicators (ratios of ApoM/TC, ApoM/TG, ApoM/HDL-C, and ApoM/LDL-C) were significantly higher in AD group than those in CN group (each p < 0.0001). After adjusted for the risk factors of AD, the plasma ApoM and its derived indicators were significantly associated with the presence of AD, respectively. ApoM (OR = 1.058, 95% CI: 1.027-1.090, p < 0.0001), ApoM/TC ratio (OR = 1.239, 95% CI: 1.120-1.372, p < 0.0001), ApoM/TG ratio (OR = 1.064, 95% CI: 1.035-1.095, p < 0.0001), ApoM/HDL-C ratio (OR = 1.069, 95% CI: 1.037-1.102, p < 0.0001), and ApoM/LDL-C ratio (OR = 1.064, 95% CI:1.023-1.106, p = 0.002). In total participants, plasma ApoM was significantly positively correlated with plasma p-tau217, plasma NfL, and ADL (each p < 0.0001) and significantly negatively correlated with MMSE and MoCA (each p < 0.0001), respectively. In further subgroup analyses, these associations remained in different APOEϵ 4 status participants and sex subgroups. ApoM/TC ratio (ΔAUC = 0.056, p = 0.044) and ApoM/TG ratio (ΔAUC = 0.097, p = 0.011) had a statistically remarkably larger AUC than ApoM, respectively. The independent addition of ApoM and its derived indicators to the basic model [combining age, sex, APOEϵ 4, and body mass index (BMI)] led to the significant improvement in diagnostic power, respectively (each p < 0.05). Conclusion: All the findings preliminarily uncovered the association between plasma ApoM and AD and provided more evidence of the potential of ApoM as a candidate biomarker of AD.
RESUMEN
The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressed during mouse retinogenesis in several neuronal types and subtypes including ganglion, amacrine, bipolar, and horizontal cells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1. These data indicate that Ebfs are both necessary and sufficient for specifying non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas they are only necessary but not sufficient for specifying ganglion cells; and further suggest that Ebfs may coordinate and cooperate with other retinogenic factors to ensure proper specification and differentiation of diverse retinal cell types and subtypes.
Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/clasificación , Neuronas/fisiología , Retina/citología , Células Madre/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bromodesoxiuridina/metabolismo , Diferenciación Celular/genética , Electroporación/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Glicina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio , Etiquetado Corte-Fin in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Factor de Transcripción Brn-3B/deficiencia , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/metabolismoRESUMEN
BACKGROUND: Exosomes are nano-sized extracellular vesicles which are secreted by cells and usually found in body fluids. Previous research has shown that exosomal secretion and autophagy-lysosomal pathway synergistically participates in intracellular abnormal protein elimination. The main pathological manifestations of Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is abnormal accumulation of mutant NOTCH3, and CADASIL vascular smooth muscle cells have been found with autophagy-lysosomal dysfunction. However, whether plasma exosomes change in CADASIL patients is still unclear. OBJECTIVE: We are aimed to investigate the differences of plasma exosomes between CADASIL patients and healthy controls. METHODS: The subjects included 30 CADASIL patients and 30 healthy controls without NOTCH3 mutation. The severity of white matter lesions (WMLs) of CADASIL patients was quantified by Fazekas score. Transmission electron microscopy and nanoparticle tracking analysis were performed to characterize plasma exosomes. In addition, NOTCH3, Neurofilament light and Aß42 levels in plasma exosomes were quantified by enzyme-linked immunosorbent assays. RESULTS: We found that exosomes from CADASIL patients were lower in quantity. In addition, CADASIL plasma exosomes had significantly lower levels of NOTCH3 and significantly increased levels of NFL than those of matched healthy subjects. Interestingly, plasma exosome NOTCH3 levels of CADASIL patients significantly correlated with severity of WMLs. CONCLUSION: The exosome NOTCH3 may be related to the pathological changes of CADASIL, which provides a basis for the pathogenesis research of CADASIL. In addition, plasma exosome NOTCH3 and NFL levels may act as biomarkers to monitor and predict disease progression and measure therapeutic effectiveness in the future clinical trials.
Asunto(s)
CADASIL/genética , Exosomas/metabolismo , Receptor Notch3/genética , Anciano , CADASIL/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Receptor Notch3/metabolismoRESUMEN
AIMS: The neurotropic growth factor PDGF-BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF-BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in vivo. However, whether PDGF-BB directly modulates the expression of TH, and the underlying mechanism is still unknown. We will carefully examine this in our current study. METHOD: MPTP-lesion mice received PDGF-BB treatment via intracerebroventricular (i.c.v) administration, and the expression of TH in different brain regions was assessed by RT-PCR, Western blot, and immunohistochemistry staining. The molecular mechanisms of PDGF-BB-mediated TH upregulation were examined by RT-PCR, Western blot, ChIP assay, luciferase reporter assay, and immunocytochemistry. RESULTS: We validated a reversal expression of TH in MPTP-lesion mice upon i.c.v administration of PDGF-BB for seven days. Similar effects of PDGF-BB-mediated TH upregulation were also observed in MPP+ -treated primary neuronal culture and dopaminergic neuronal cell line SH-SY5Y cells. We next demonstrated that PDGF-BB rapidly activated the pro-survival PI3K/Akt and MAPK/ERK signaling pathways, as well as the downstream CREB in SH-SY5Y cells. We further confirmed the significant induction of p-CREB in PDGF-BB-treated animals in vivo. Using a genetic approach, we demonstrated that the transcription factor CREB is critical for PDGF-BB-mediated TH expression. The activation and nucleus translocation of CREB were promoted in PDGF-BB-treated SH-SY5Y cells, and the enrichment of CREB on the promoter region of TH gene was also increased upon PDGF-BB treatment. CONCLUSION: Our data demonstrated that PDGF-BB directly regulated the expression of TH via activating the downstream Akt/ERK/CREB signaling pathways. Our finding will further support the therapeutic potential of PDGF-BB in PD, and provide the possibility that targeting PDGF signaling can be harnessed as an adjunctive therapy in PD in the future.
Asunto(s)
Becaplermina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/biosíntesis , Animales , Becaplermina/administración & dosificación , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Femenino , Humanos , Inmunohistoquímica , Inyecciones Intraventriculares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Intoxicación por MPTP/patología , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Proteína Oncogénica v-akt/genética , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , EmbarazoRESUMEN
As an important endogenous growth factor, PDGF-BB can effectively promote neurogenesis, thus is considered as a potential agent for Parkinson's disease (PD) therapy. However, the protective function of PDGF-BB on neuronal cells, especially the molecular mechanism, remains less clear, which is needed to explore before its clinical practice. In this study, we investigated the function and mechanism of PDGF-BB against 1-methyl-4-phenylpyridinium (MPP+) toxicity in SH-SY5Y cells, a widely used cellular tool for PD-related molecular study. Our results indicated that PDGF-BB exerts a prominent protective effect against neurotoxin MPP+-triggered ROS generation and cellular loss. We further dissected the molecular mechanism involved in this process by using specific pharmacological inhibitors and validated that the distinct signaling pathways PI3K/Akt/GSK-3ß and MEK/ERK are involved in the process against MPP+ toxicity upon PDGF-BB treatment. We also detected that activation of upstream PI3K/Akt/GSK-3ß and MER/ERK signaling pathways contribute to phosphorylation and nuclear translocation of the downstream effector cyclic response element-binding protein (CREB), a known transcription factor to exhibit neuroprotective and growth-promoting effects. Using genetic approach, we further confirmed that the activation of CREB is involved in PDGF-BB-mediated protection in MPP+-exposed SH-SY5Y cells. Together, these data demonstrated the protective effect of PDGF-BB in MPP+-mediated toxicity in SH-SY5Y cells and verified the involved molecular mechanism in PDGF-BB-mediated neuroprotection.
Asunto(s)
Antioxidantes/farmacología , Becaplermina/farmacología , Intoxicación por MPTP/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , 1-Metil-4-fenilpiridinio/toxicidad , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.