RESUMEN
The escalating global demand for food and industrialization has placed significant pressure on the integrity and management of inland lake ecosystems. Herein, the organophosphorus pesticides (OPPs) pollution status and their relationship with dissolved organic matter (DOM) in Dongting Lake were investigated to identify the ecological risks and potential sources of OPPs. The total concentrations of 18 detected OPPs were in the range of 13.49-375.24 ng/L, with higher concentration observed in east and west lake regions. Among these, fenthion was the dominant contributor, accounting for 64% of total OPPs, posing significant ecological risk to aquatic organisms. Nearly all of sites showed high combined risk of total OPPs. Parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI) technique showed that DOM was mainly composed of terrestrial humic-like and tryptophan-like substances. Moreover, correlation analysis revealed a close association between DOM optical parameters and OPP concentrations. Specifically, OPPs exhibited a significantly positive correlation with tyrosine-like substances, while displaying a negative correlation with fulvic acid-like substances. These results indicated that OPP concentrations may decrease with increasing humification levels and declining tyrosine-like substance contents. This study underscores the critical role of DOM in assessing the occurrence and sources of OPPs in aquatic environments, providing valuable insights for effective environmental management strategies.
RESUMEN
In this study, a novel catalyst based on MIL-53(Fe) was synthesized and modified through sublimed sulfur (S-MIL-53(Fe)) to induce a synergistic effect of surface adsorption and persulfate activation. The S-doped modification not only increased the surface area but also accelerated the electron transfer process of the iron cycle. The performance of the newly synthesized S-MIL-53(Fe) adsorptive catalyst was evaluated by chemical adsorption and peroxydisulfate (PDS) activated removal of an emerging pollutants, oxytetracycline (OTC). The S-MIL-53(Fe) adsorptive catalyst was able to adsorb 61.7% of OTC after 120 min, and the removal efficiency reached 84.8% within 5 min after PDS dosing. The boosting effect of sulfur on the system was confirmed by characterization analysis and experimental testing. Even after 7 cycles, the removal efficiency of S-MIL-53(Fe) (69.0%) for OTC remained superior to that of pure MIL-53(Fe) (25.1%). Additionally, the adsorption kinetics and adsorption isotherm model of the material were investigated. The possible OTC degrading process was proposed based on radical quenching and electron paramagnetic resonance (EPR). This study provides a feasible way to fabricate an S-doped MIL-53(Fe) adsorptive catalyst for the remediation of antibiotics-containing wastewater.
Asunto(s)
Oxitetraciclina , Agua , Adsorción , Antibacterianos , AzufreRESUMEN
This paper introduced the overview of the "eight trends" of Chinese medicinal materials(CMM) industry in 2021, analyzed the problems of CMM production, and put forward development suggestions. Specifically, "eight trends" could be summarized as follows.(1) The growing area of CMM tended to be stable, and some provinces began to release the local catalog of Dao-di herbs.(2) The protection process of new varieties accelerated, and a number of excellent varieties were bred.(3) The theory of ecological cultivation was further enriched, and the demonstration effect of ecological cultivation technology was prominent.(4) Some CMM realized complete mechanization and formed typical model cases.(5) The number of cultivation bases using the traceability platform increased, and provincial internet trading platforms were set up.(6) The construction of CMM industrial clusters accelerated, and the number of provincial-level regional brands increased rapidly.(7) Many new agricultural business entities were founded nationwide, and a variety of methods were used to drive the intensified development of CMM.(8) A number of local TCM laws were promulgated, and the management regulation of food and medicine homology substances catalogs was issued. On this basis, four suggestions for CMM production were proposed.(1) It is suggested to speed up the formulation of the national catalog of Dao-di herbs and carry out the certification of Dao-di herbs production bases.(2) Ecological planting of forest and grassland medicine should be further strengthened in terms of technical research and promotion based on the principle of ecological priority.(3) The basic work of disaster prevention should be paid more attention and technical measures for disaster mitigation should be developed.(4) The planted area of commonly used CMM should be incorporated into the national regular statistical system.
Asunto(s)
Comercio , Industrias , Agricultura , Certificación , ChinaRESUMEN
Tudor domain containing 1 (TDRD1) is a member of the TDRD family and plays an important role in embryogenesis and gametogenesis. A detailed study of the characteristics of chicken TDRD1 can lay a foundation for the study of chicken spermatogonia stem cell formation and spermatogenesis. We cloned 2117 bp upstream fragment of TDRD1 promoter and constructed a series of recombinant vectors with different length deletions. The dual-luciferase experiments reveal that the upstream region of - 161 to 0 bp was its core transcription promoter region. Bioinformatics analysis predicted the possible binding of Transcription Factor 7 Like 2 (TCF7L2) and Zinc Finger E-Box-Binding Homeobox 1(ZEB1) transcription factors in the core region. The transcriptional activity of TDRD1 was significantly decreased after mutation of TCF7L2-binding site, while that of TDRD1 was significantly increased after mutation of ZEB1-binding site. Further, ChIP experiments verified that TCF7L2 enriched in the TDRD1 core transcriptional initiation region, suggesting that TCF7L2 and ZEB1 play an important role in the regulation of TDRD1. In summary, the region from - 161 to 0 bp is the core promoter region of TDRD1; ZEB1 and TCF7L2 bind to the TDRD1 promoter region and TCF7L2 activates the transcription of TDRD1 gene.
Asunto(s)
Proteínas de Ciclo Celular/genética , Pollos , Factores de Transcripción , Animales , Sitios de Unión/genética , Pollos/genética , Masculino , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismoRESUMEN
Norovirus is one of the major causes of outbreaks and sporadic cases of acute gastroenteritis in school children. Obtaining local genotype diversity information regarding norovirus is important for developing and evaluating prevention strategies of the transmission of this virus in school children. Clinical specimens, obtained from the routine acute gastroenteritis surveillance network from 2018 to 2019, were primarily tested using commercial real-time PCR Kit. Samples with Ct value less than 25 were selected and used for complete genome sequencing and those with Ct value between 25 and 30 were selected and used for he partial VP1 and RdRp regions sequencing. Phylogenetic trees of the viral genome were constructed by using the neighbor-joining method with bootstrap analysis of 1000 replicates in MEGA 6.0. Epidemiological surveillance of acute intestinal infections (n = 384) showed high-level detection (73.18%) of human norovirus in school endemic acute gastroenteritis events in Changzhou, with obvious epidemic characteristics in autumn and winter. Through genotyping, it was found that 93.12% of norovirus were GII, including GII.2, GII.3, GII.4, GII.6, GII.7, and GII.17. By October 2019, two norovirus genotypes, GII.4[P31] and GII.17[P17], became the preponderant epidemic strains. Phylogenetic analysis of the new GII.17[P17] complete genomes showed close relationship with Miyagi strain identified in Japan in 2015, and GII.4[P31] showed close relationship with Jinan strain indentified in China in 2017. The study highlights the emerging role of GII.4[P31] and GII.17[P17] in causing endemic acute gastroenteritis outbreaks at school children, in Changzhou, China in 2019.
Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Infecciones por Caliciviridae/epidemiología , Niño , China/epidemiología , Brotes de Enfermedades , Heces , Gastroenteritis/epidemiología , Variación Genética , Genotipo , Humanos , Masculino , Norovirus/genética , FilogeniaRESUMEN
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Preparaciones Farmacéuticas , Plásticos , Agua , Contaminantes Químicos del Agua/toxicidadRESUMEN
Chlorine disinfection of saline wastewater effluents rich in bromide and iodide forms relatively toxic brominated and iodinated disinfection byproducts (DBPs). Ultrasonication is a relatively new water treatment technology, and it is less sensitive to suspended solids in wastewaters. In this study, we examined the effects of ultrasonication (in terms of reactor type and combination mode with chlorination) on the DBP formation and toxicity in chlorinated primary and secondary saline wastewater effluents. Compared with the chlorinated wastewater effluent samples without ultrasonication, ultrasonic horn pretreatment of the wastewater effluent samples reduced the total organic halogen (TOX) levels in chlorination by â¼30%, but ultrasonic bath pretreatment of the wastewater samples did not significantly change the TOX levels in chlorination, which might be attributed to the higher energy utilization and decomposition extent of organic DBP precursors in the ultrasonic horn reactor. Moreover, the TOX levels in the chlorinated samples with ultrasonic horn pretreatment (USH-chlorination), simultaneous treatment (chlorination+USH) and subsequent treatment (chlorination-USH) were also significantly reduced, with the maximum TOX reductions occurring in the samples with ultrasonic horn pretreatment. A toxicity index was calculated by weighting and summing the levels of total organic chlorine, total organic bromine and total organic iodine in each treated sample. The calculated toxicity index values of the chlorinated wastewater effluent samples followed a descending rank order of "chlorination" > "chlorination+USH" > "chlorination-USH" > "USH-chlorination", with the lowest toxicity occurring in the samples with ultrasonic horn pretreatment. Then, a developmental toxicity bioassay was conducted for each treated sample. The measured toxicity index values of the chlorinated wastewater samples followed the same descending rank order.
Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Halógenos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Gastrodia elata, as the valuable Chinese medicinal material, has been used for more than 2 000 years in China. With the increasing market demand for G. elata, the traditional wild resources have been unable to transform into commodities. At present, local authorities give full play to the advantages of natural resources and vigorously cultivate G. elata to form the cultivation mode and technical system with local characteristics. Huanggang Comprehensive Experimental Station of National Technical System of Chinese Medicinal Materials Industry has optimized and summarized the paddy-upland rotation of G. elata-Oryza sativa in Dabie Mountains of Hubei province through field visits and guidance for four consecutive years. Based on the ecological adaptability and planting characteristics of G. elata and O. sativa, and the actual production experience of farmers, analyzed the principle of paddy-upland rotation from production environment selection and fungus treatment, and evaluated the paddy-upland rotation of G. elata-O. sativa from production status, ecological benefits, and economic benefits. The paddy-upland rotation of G. elata-O. sativa has achieved efficient cultivation of G. elata and produced considerable economic benefits. Through the summary, analysis, and evaluation of the paddy-upland rotation mode of G. elata-O. sativa in Dabie Mountains, the present study put forward the optimization strategy of cultivation technology for G. elata in low-altitude areas, i.e., to use artificial Armillaria sticks instead of traditional cut-log for substitute cultivation of G. elata, which can effectively alleviate the "bacteria-forest contradiction" arising from the cultivation of G. elata. It can also improve the ecological environment and production status of the Dabie Mountains and even the G. elata producing areas at the same altitude.
Asunto(s)
Armillaria , Gastrodia , Oryza , Bosques , Hongos , Gastrodia/microbiologíaRESUMEN
Green agriculture has become the "wind vane" of agricultural reform in the new era. The development concept of Chinese materia medica(CMM) ecological agriculture and the emergence of new technologies provide momentum for the supply of high-quality green ecological products. As special ecological products, Dao-di herbs have medicinal, economic, ecological, and cultural values. The ecological planting of CMM and the value realization of ecological products are of great significance for the high-quality development of CMM agriculture and for prospering agriculture by improving quality. Therefore, this paper reviews the development status and typical cases, and puts forward the advantages of ecological product value realization of Dao-di herbs. On this basis, a value accounting system for ecological products of CMM was constructed from three aspects: supply services, ecological services, and cultural services. Finally, the suggestions for realizing the value of CMM ecological products are put forward.(1)It is suggested to strengthen the practice of ecological planting and production of CMM, and innovate the value realization model of ecological products.(2)The ecological planting bases of Dao-di herbs should be constructed to enhance the supply capacity of high-quality ecological products.(3)The quality and safety of ecological CMM should be improved to create the ecological planting brand of Dao-di herbs.(4)The ecological product value system and mechanism should be improved for realizing the value of CMM ecological products.(5)The education and publicity should be strengthened to raise the public awareness of the value of CMM ecological products.
Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Plantas Medicinales , Medicina Tradicional China , ChinaRESUMEN
This study aims to explore the soil fertility in the main Artemisia argyi planting areas in Qichun county.To be specific, the soil physical and chemical properties in the main planting areas of A.argyi in Qichun county were analyzed.On this basis, 12 indexes were selected for principal component analysis(PCA) which was then combined with the norm value of each index and the correlation coefficients between the indexes to establish the minimum data set(MDS).The radar map was plotted to directly demonstrate the level of each index and the comprehensive level of the sampling sites.The comprehensive index model was used to calculate the soil fertility quality index(SFQI) of the total data set(TDS) and MDS(SFQI-TDS and SFQI-MDS, respectively), and linear regression of the two was performed.The results showed that the indexes that made up the MDS for soil fertility evaluation were pH, available potas-sium, available iron, available zinc, available manganese, available copper, and available magnesium.The radar map suggested the greatest difference in soil organic matter and smallest difference in available nitrogen among the 14 sampling sites.Moreover, the overall content of available phosphorus and available iron was high, while that of available nitrogen was the lowest.The SFQI-MDS which was yielded based on the weight of each index in MDS calculated with the norm value was more sensitive and the SFQI had stronger correlation with TDS-SFQI, which can better represent TDS-SFQI.SFQI-MDS was in the range of 0.298-0.784, with the average of 0.565 and variation coefficient of 18.38%.Caohe Town had the highest average SFQI-MDS.Clustering of SFQI-MDS value suggested that the soil fertility can be classified into 4 levels: level â (SFQI ≥ 0.677) indicated excellent soil fertility, which accounted for 11.24%(mainly in Qingshi town, Balihu, and Zhangbang town); level â ¡(0.571≤SFQI≤0.680) meant good fertility, which made up 43.82%(mainly in Caohe town, Hengche town, and Pengsi town); level â ¢(0.466≤SFQI≤0.557) indicated average fertility, which took up 32.58%(mainly in Chidong town and Zhulin town); level â £(SFQI≤0.421) suggested poor fertility, which accounted for 12.36%(mainly in Guanyao town).It is recommended that nitrogen, potassium, magnesium, and calcium fertilizers should be increased and organic ferti-lizer should be applied for the cultivation of A.argyi in Qichun county to improve soil fertility and soil physical and chemical properties.
Asunto(s)
Artemisia , Suelo , Artemisia/química , Hierro , Magnesio , Nitrógeno/análisis , Fósforo , Suelo/químicaRESUMEN
Carbon dioxide peaking and carbon neutrality have become hot issues of political and economic activities in China and abroad. The structure and development of various industries in China will be profoundly affected in the process of accomplishing "Dual Carbon" goals. Eco-agriculture of Chinese medicine(EACM) highlights the balance and sustainable development of the ecosystem while producing high-quality medicinal materials. With chemically synthesized fertilizers, pesticides, and growth regulators prohibited, EACM emphasizes the recycling of agricultural and sideline products and the reduction of waste output, which results in the minimal negative impact on the ecological environment. Therefore, it is typical agriculture with low-carbon sources and high-carbon sinks. This study reviewed the mechanism and potential of EACM in carbon dioxide peaking and carbon neutrality, analyzed the specific ways of EACM in reducing carbon sources and increasing carbon sinks based on the typical ecological planting pattern, and proposed the point of view to strengthen EACM as well as the "Dual Carbon" theory and research methods, so as to direct low-carbon and efficient deve-lopment. Furthermore, this study advocated to comprehensively promote the transformation of Chinese medicine production from chemical agriculture to eco-agriculture to improve the comprehensive benefits of contribution rate of carbon neutrality, explore and establish carbon sink compensation mechanism to ensure the sustainable and healthy development of EACM, and strengthen the training of EACM and "Dual Carbon" theory and technologies to continuously improve the capacity of EACM in sustainable development. This study is expected to provide a reference for the development of ecological functions in EACM and the development of economic functions through ecological functions.
Asunto(s)
Dióxido de Carbono , Medicina Tradicional China , Agricultura , China , Ecosistema , FertilizantesRESUMEN
HYOU1 is upregulated in many kinds of cancer cells, and its high expression is associated with tumour invasiveness and poor prognosis. However, the role of HYOU1 in papillary thyroid cancer (PTC) development and progression remains to be elucidated. Here, we reported that HYOU1 was highly expressed in human PTC and associated with poor prognosis. HYOU1 silencing suppressed the proliferation, migration and invasion of PTC cells. Mechanistic analyses showed that HYOU1 silencing promoted oxidative phosphorylation while inhibited aerobic glycolysis via downregulating LDHB at the posttranscriptional level. We further confirmed that the 3'UTR of LDHB mRNA is the indirect target of HYOU1 silencing and HYOU1 silencing increased miR-375-3p levels. While LDHB overexpression significantly suppressed the inhibitory effects of HYOU1 silencing on aerobic glycolysis, proliferation, migration and invasion in PTC cells. Taken together, our findings suggest that HYOU1 promotes glycolysis and malignant progression in PTC cells via upregulating LDHB expression, providing a potential target for developing novel anticancer agents.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glucólisis , Proteínas HSP70 de Choque Térmico/metabolismo , Lactato Deshidrogenasas/metabolismo , Estabilidad del ARN , ARN Mensajero/química , Neoplasias de la Tiroides/patología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Proteínas HSP70 de Choque Térmico/genética , Humanos , Lactato Deshidrogenasas/genética , Invasividad Neoplásica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Células Tumorales CultivadasRESUMEN
Drug resistance is often developed during clinical chemotherapy of ovarian cancers. The ubiquitin-like protein interferon-stimulated gene 15 (ISG15) is possibly dependent on tumour context to promote or suppress progression of various tumours. The ubiquitin-like protein interferon-stimulated gene 15 (ISG15) was decreased in cisplatin-resistant ovarian cancer cells. The current study identified that both ectopic wild type and nonISGylatable mutant ISG15 expression inhibited CSC-like phenotypes of cisplatin-resistant ovarian cancer cells. Moreover, ectopic ISG15 expression suppressed tumour formation in nude mice. In addition, ISG15 downregulation promoted CSC-like features of cisplatin-sensitive ovarian cancer cells. Furthermore, low ISG15 expression was associated with poor prognosis in patients with ovarian cancer. Transcriptional repressor Krüppel-like factor 12 (KLF12) downregulated ISG15 in cisplatin-resistant cells. Our data indicated that downregulating ISG15 expression, via weakening effect of KLF12, might be considered as new therapeutic strategy to inhibit CSC phenotypes in the treatment of cisplatin-resistant ovarian cancer.
Asunto(s)
Cisplatino/farmacología , Citocinas/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Ubiquitinas/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Movimiento Celular , Proliferación Celular , Citocinas/genética , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas , Ubiquitinas/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC-related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor-ß). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.
Asunto(s)
Proteína Morfogenética Ósea 4/genética , Epigénesis Genética/genética , Histona Metiltransferasas/genética , Testículo/crecimiento & desarrollo , Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/metabolismo , Animales , Blastodermo/crecimiento & desarrollo , Diferenciación Celular/genética , Pollos/genética , Pollos/crecimiento & desarrollo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genitales/crecimiento & desarrollo , Células Germinativas/crecimiento & desarrollo , Masculino , Transducción de Señal/genética , Testículo/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Factor de Crecimiento Transformador beta/genética , Proteína Wnt-5a/genéticaRESUMEN
MOTIVATION: Evaluating genome similarity among individuals is an essential step in data analysis. Advanced sequencing technology detects more and rarer variants for massive individual genomes, thus enabling individual-level genome similarity evaluation. However, the current methodologies, such as the principal component analysis (PCA), lack the capability to fully leverage rare variants and are also difficult to interpret in terms of population genetics. RESULTS: Here, we introduce a probabilistic topic model, latent Dirichlet allocation, to evaluate individual genome similarity. A total of 2535 individuals from the 1000 Genomes Project (KGP) were used to demonstrate our method. Various aspects of variant choice and model parameter selection were studied. We found that relatively rare (0.001
Asunto(s)
Genoma , Programas Informáticos , Genética de Población , Humanos , Modelos Estadísticos , Análisis de Componente PrincipalRESUMEN
Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.
Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfectantes/análisis , Desinfectantes/toxicidad , Desinfección , Halogenación , Halógenos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Coptis chinensis is one of bulk traditional herbal medicines in China. In recent years, the occurrence of various diseases has caused great yield loss and quality reduction of C. chinensis, which has become an important threat of herbal medicine industry. Here we reviewed the symptoms, pathogens, epidemiology and control methods of 6 common diseases of C. chinensis including root rot, southern blight, violet root rot, leaf spot, powdery mildew, and anthracnose. This review aims at providing guidance for the disease diagnostic, pathogen identification, and control strategies of the diseases on C. chinensis, and facilitate the growth of traditional medicine industry.
Asunto(s)
Coptis , Plantas Medicinales , Basidiomycota , China/epidemiologíaRESUMEN
As the most advanced environment-friendly production model in the international society, ecological agriculture of Chinese materia medica(CMM) is the only way for the development of modern agriculture. With the proposal of the declaration on ecolo-gical agriculture of CMM, "Don't grab land from farmland, don't be enemies of grass and insects, don't be afraid of barren slopes and forests, and live up to the green and green mountains", the ecological planting of CMM has blossomed all over the country, and formed a scientific theory, technology and model. Based on the theory and method of economics, this paper expounds the comprehensive benefits and development advantages of ecological agriculture of CMM from the perspectives of farmers(producers), patients(consumers) and the country. From the perspective of medicinal farmers, the input and output income of conventional agriculture and ecological agriculture of CMM such as Panax ginseng, Astragalus propinquus, Atractylodes lancea, and Bupleurum chinense were compared, and it was found that ecological agriculture of CMM had obvious advantages in net income, average annual income and input-output ratio, which could better promote farmers' income. From the perspective of patients, according to the same dose, the content of active ingredients in ecologically planted CMMs is significantly higher than that in conventionally-planted herbs, and the amount of effective substances taken by patients is also higher, so as to achieve better therapeutic effect. At the national level, ecological planting of CMM is the key to ensuring the high-quality development of CMM industry, increasing farmers' income, ensuring the safety of people's drug use and promoting the sustainable development of agriculture. It is also an important part of realizing the harmonious development of economy, society and environment and promoting ecological civilization. In general, the declaration on ecological agriculture of CMM embo-dies the core characteristics and goals of ecological agriculture, and also points of the path and vision of ecological agriculture of CMM in the future. The declaration will guide production practice, promote the benefit of farmers, and lay the foundation for the sustainable development of CMM industry.
Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Plantas Medicinales , Agricultura , Humanos , Medicina Tradicional ChinaRESUMEN
Solid tumour frequently undergoes metabolic stress during tumour development because of inadequate blood supply and the high nutrient expenditure. p53 is activated by glucose limitation and maintains cell survival via triggering metabolic checkpoint. However, the exact downstream contributors are not completely identified. BAG3 is a cochaperone with multiple cellular functions and is implicated in metabolic reprogramming of pancreatic cancer cells. The current study demonstrated that glucose limitation transcriptionally suppressed BAG3 expression in a p53-dependent manner. Importantly, hinderance of its down-regulation compromised cellular adaptation to metabolic stress triggered by glucose insufficiency, supporting that BAG3 might be one of p53 downstream contributors for cellular adaptation to metabolic stress. Our data showed that ectopic BAG3 expression suppressed p53 accumulation via direct interaction under metabolic stress. Thereby, the current study highlights the significance of p53-mediated BAG3 suppression in cellular adaptation to metabolic stress via facilitating p53 accumulation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Regulación de la Expresión Génica , Trastornos del Metabolismo de la Glucosa/prevención & control , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Trastornos del Metabolismo de la Glucosa/etiología , Trastornos del Metabolismo de la Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/patología , Células HCT116 , Humanos , Células MCF-7 , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Halogenated disinfection byproducts (DBPs) are generated via reactions with natural organic matter (NOM) in chlorine disinfection of drinking water. How large NOM molecules are converted to halogenated aliphatic DBPs during chlorination remains a fascinating yet largely unresolved issue. Recently, many relatively toxic halogenated aromatic DBPs have been identified in chlorinated drinking waters, and they behave as intermediate DBPs to decompose to halogenated aliphatic DBPs. There is still one gap between NOM and halogenated aromatic DBPs. In this study, nine nonhalogenated aromatic compounds were identified as new intermediate DBPs in chlorination, including 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 3-formyl-4-hydroxybenzoic acid, salicylic acid, 5-formyl-2-hydroxybenzoic acid, 4-hydroxyphthalic acid, 4'-hydroxyacetophenone, 4-methylbenzoic acid, and 4-hydroxy-3-methylbenzaldehyde. These nonhalogenated aromatic DBPs formed quickly and reached the maximum levels at relatively low chlorine doses within a short contact time, and their formation pathways were proposed. The formation kinetics of three nonhalogenated aromatic DBPs and their corresponding monochloro-/dichloro-substitutes during chlorination were then modeled. The nonhalogenated aromatic DBPs contributed up to 84% of the formed monochloro-substitutes and 22% of the formed dichloro-substitutes, demonstrating that they somewhat acted as intermediates between NOM and halogenated aromatic DBPs. Furthermore, the formed nonhalogenated aromatic DBPs were found to be removed by >50% by granular activated carbon adsorption.