Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 79(11): 319, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121514

RESUMEN

The aim of this study was to evaluate the effects of Lactiplantibacillus plantarum SCS4 (L. plantarum SCS4) on oxidative stress in streptozocin-induced hyperglycemic mice. After establishment of the hyperglycemic model, control group mice were gavaged daily with phosphate-buffered saline, while different experimental groups (AG, BG, and CG) mice were gavaged with L. plantarum SCS4 suspension, cellular inclusion suspension, and inactivated inclusion suspension for 10 weeks, respectively. Compared with the model group (MG) group, the results showed that fasting blood glucose levels in BG and CG groups decreased, and postprandial 2-h blood glucose levels in BG groups decreased, whereas glucose tolerance improved. Meanwhile, ROS and MDA levels in serum of AG mice were decreased significantly (P < 0.05). Compared with the MG group, serum levels of GPx, HO-1, and NQO1 were increased in the BG group, whereas serum levels of CAT, HO-1, and GSH were increased in the CG group. Our results indicate that L. plantarum SCS4 can alleviate oxidative stress induced by hyperglycemia, and there may be synergistic effects among the different treatments.


Asunto(s)
Glucemia , Hiperglucemia , Animales , Ratones , Estrés Oxidativo , Fosfatos , Especies Reactivas de Oxígeno , Estreptozocina/farmacología
2.
J Cancer Res Clin Oncol ; 150(2): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411731

RESUMEN

The tripartite motif-containing (TRIM) protein family has steadily become a hotspot in tumor-related research. As a member of the E3 ubiquitin ligase family, TRIM is working on many crucial biological processes, including the regulation of tumor cell proliferation, metastasis, apoptosis, and autophagy. Among the diverse TRIM superfamily members, TRIM3 operates via different mechanisms in various types of tumors. This review primarily focuses on the current state of research regarding the antitumor mechanisms of TRIM3 in different cancers. A more in-depth study of TRIM3 may provide new directions for future antitumor treatments. Our review focuses on TRIM3 proteins and cancer. We searched for relevant articles on the mechanisms by which TRIM3 affects tumorigenesis and development from 1997 to 2023 and summarized the latest progress and future directions. Triad-containing motif protein 3 (TRIM3) is an important protein, which plays a key role in the process of tumorigenesis and development. The comprehensive exploration of TRIM3 is anticipated to pave the way for future advancements in antitumor therapy, which is expected to be a new hallmark for cancer detection and a novel target for drug action. TRIM3 is poised to become a significant milestone in cancer detection and a promising focal point for drug intervention. Recent years have witnessed notable progress in research aimed at unraveling the antitumor mechanism of TRIM3, with far-reaching implications for practical tumor diagnosis, treatment protocols, efficacy evaluation, economics, and pharmaceutical utilization.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Humanos , Apoptosis , Autofagia , Proliferación Celular , Proteínas de Motivos Tripartitos , Proteínas Portadoras
3.
Fitoterapia ; 173: 105773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38097020

RESUMEN

Three previously undescribed compounds including a polyketide (1) and two lactams (2 and 3) were obtained from Tuber indicum. The structures of new findings were elucidated by HRESIMS, NMR as well as NMR and ECD calculations. Transcriptome analysis through RNA-seq revealed that compound 2 exhibits immunosuppressive activity. Lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were employed as a model to explore the effect of these compounds in immunosuppressive activity. The results showed that 2 could reduce the generation of inflammatory mediators including nitric oxide (NO), reactive oxygen species (ROS), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). Western blotting analysis demonstrated that 2 could suppressed the PI3K pathway by decreasing the levels of p-PI3K and p-Akt, while increasing the levels of p-PTEN. The anti-inflammatory activity of 2 was further confirmed using a zebrafish in vivo model.


Asunto(s)
Ascomicetos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Animales , Ratones , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pez Cebra/metabolismo , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos , Óxido Nítrico/metabolismo , Perfilación de la Expresión Génica , Células RAW 264.7
4.
Artículo en Inglés | MEDLINE | ID: mdl-37901116

RESUMEN

Aflatoxins are toxic secondary metabolites that often contaminate food and animal feed, causing huge economic losses and serious health hazards. Aflatoxin contamination has become a major concern worldwide. Biological methods have been used to reduce aflatoxins in food and feed by inhibiting toxin production and detoxification. Among biological methods, lactic acid bacteria are of significant interest because of their safety, efficiency, and environmental friendliness. This study aimed to review the mechanisms by which lactic acid bacteria degrade aflatoxins and the factors that influence their degradation efficiency, including the action of the lactic acid bacteria themselves (cell wall adsorption) and the antifungal metabolites produced by the lactic acid bacteria. The current applications of lactic acid bacteria to food and feed were also reviewed. This comprehensive analysis provided insight into the binding mechanisms between lactic acid bacteria and aflatoxins, facilitating the practical applications of lactic acid bacteria to food and agriculture.

5.
Food Res Int ; 173(Pt 1): 113250, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803562

RESUMEN

Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat ß-glucan (OG) and hydrolyzed oat ß-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.


Asunto(s)
Hidroxibenzoatos , beta-Glucanos , Hidroxibenzoatos/química , Antioxidantes/farmacología , Antioxidantes/química
6.
Cell Death Dis ; 14(3): 207, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949071

RESUMEN

The mesenchymal (MES) subtype of glioblastoma (GBM) is a highly aggressive, malignant and proliferative cancer that is resistant to chemotherapy. Runt-related transcription factor 1 (RUNX1) was shown to support MES GBM, however, its underlying mechanisms are unclear. Here, we identified USP10 as a deubiquitinating enzyme that regulates RUNX1 stabilization and is mainly expressed in MES GBM. Overexpression of USP10 upregulated RUNX1 and induced proneural-to-mesenchymal transition (PMT), thus maintaining MES properties in GBM. Conversely, USP10 knockdown inhibited RUNX1 and resulted in the loss of MES properties. USP10 was shown to interact with RUNX1, with RUNX1 being stabilized upon deubiquitylation. Moreover, we found that USP10 inhibitor Spautin-1 induced RUNX1 degradation and inhibited MES properties in vitro and in vivo. Furthermore, USP10 was strongly correlated with RUNX1 expression in samples of different subtypes of human GBM and had prognostic value for GBM patients. We identified USP10 as a key deubiquitinase for RUNX1 protein stabilization. USP10 maintains MES properties of GBM, and promotes PMT of GBM cells. Our study indicates that the USP10/RUNX1 axis may be a potential target for novel GBM treatments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Línea Celular Tumoral , Neoplasias Encefálicas/patología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
7.
Sci Rep ; 13(1): 17960, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863960

RESUMEN

Tubulin polymerization promoting protein 3 (TPPP3), a member of the tubulin polymerization family, participates in cell progressions in several human cancers, its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we investigated the role and application value of TPPP3 in gliomas and found that the expression of TPPP3 in glioma was higher than that in normal brain tissue (NBT), and increased with the grade of glioma. Up-regulation of TPPP3 expression in glioblastoma cells confer stronger ability of migration, invasion, proliferation and lower apoptosis in vitro. Inhibition of TPPP3 expression in GBM could reduce the migration, invasion, proliferation and induce the apoptosis of glioblastoma cells. TPPP3 affected the process of EMT by regulating the expression of Snail 1 protein. In clinical data analysis, we found a positive correlation between TPPP3 and Snail1 protein expression levels in glioblastomas. Low TPPP3 expression leads to better survival expectations in glioblastomas patients. The content of this study paves the way for further in-depth exploration of the role of TPPP3 in glioblastoma in the future, and provides new treatment and research directions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Factores de Transcripción de la Familia Snail , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/metabolismo , Tubulina (Proteína)/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo
8.
Front Nutr ; 9: 943911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845802

RESUMEN

Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of "plant gold." We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.

9.
Nat Prod Res ; 36(8): 2097-2104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33205667

RESUMEN

Two new phenolic glycosides 7R,8R-threo-4,7,9,9'-tetrahydroxy-3-methoxy-8-O-4'-neolignan-3'-O-(3''-α-L-arabinofuranosyl)-ß-D-glucopyranoside. (1), 4-(4'-hydroxyphenyl)-2-butanone-4''-O-(6-ß-D-xylosyl)-ß-D-glucopyranoside (2), along with two known related analogues 7R,8R-threo-4,7,9,9'-tetrahydroxy-3-methoxy-8-O-4'-neolignan-3'-O-ß-D-glucopyranoside (3), 4-(4'-hydroxyphenyl)-2-butanone-4'-O-ß-D-glucopyranoside (4) were obtained from the roots of Sanguisorba officinalis. Combined with acid hydrolysis derivatization, the absolute configurations of these new compounds were elucidated by comprehensive analyses of spectroscopic data including nuclear magnetic resonance (NMR), electrospray ionization high resolution mass (HRESIMS) as well as circular dichroism (CD). Compounds 1-4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).


Asunto(s)
Lignanos , Sanguisorba , Antiinflamatorios/química , Glicósidos/química , Lignanos/química , Estructura Molecular , Raíces de Plantas/química , Sanguisorba/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA