Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(9): e202303559, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38088217

RESUMEN

In this study, we have developed a novel catalyst synthesized by phosphotungstic acid and a gemini quaternary ammonium cation salt. This quaternary ammonium salt not only reduces the interfacial tension between olefins and hydrogen peroxide but also forms a notably stable structure with phosphotungstic acid. Dodecene was successfully epoxidized to epoxy dodecane with a selectivity of 82.9 %. The impact of initial conditions was systematically investigated such as molar ratio, temperature, reaction time, and catalyst dosage on the catalytic performance. Characterization of the catalyst morphology was performed by SEM, TEM and SAXS. Raman spectra, FT-IR and XPS spectra were employed to perform the catalyst transformation during the epoxidation reaction. This catalytic mechanism study could provide the industrial application in the epoxidation of long-chain olefins.

2.
Chemistry ; 30(45): e202401853, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38825564

RESUMEN

Phosphaphenalenes, extended π conjugates with the incorporation of phosphorus, are attractive avenues towards molecular materials for the applications in organic electronics, but their electron accepting ability have not been investigated. Herein we present systematic studies on the reductive behavior of a representative phosphaphenalene and its oxide by chemical and electrochemical methods. The chemical reduction of the phosphaphenalene by alkali metals reveals the facile P-C bond cleavage to form phosphaphenalenide anion, which functions as a transfer block for structure modification on the phosphorus atom. In contrast, the pentavalent P-oxide reacts with one or two equivalents of elemental sodium to form stable radical anion and dianion salts, respectively.

3.
Acta Pharmacol Sin ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294445

RESUMEN

Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 µmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.

4.
Mol Cell ; 61(5): 720-733, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942676

RESUMEN

TRIM21 is a RING finger domain-containing ubiquitin E3 ligase whose expression is elevated in autoimmune disease. While TRIM21 plays an important role in immune activation during pathogen infection, little is known about its inherent cellular function. Here we show that TRIM21 plays an essential role in redox regulation by directly interacting with SQSTM1/p62 and ubiquitylating p62 at lysine 7 (K7) via K63-linkage. As p62 oligomerizes and sequesters client proteins in inclusions, the TRIM21-mediated p62 ubiquitylation abrogates p62 oligomerization and sequestration of proteins including Keap1, a negative regulator of antioxidant response. TRIM21-deficient cells display an enhanced antioxidant response and reduced cell death in response to oxidative stress. Genetic ablation of TRIM21 in mice confers protection from oxidative damages caused by arsenic-induced liver insult and pressure overload heart injury. Therefore, TRIM21 plays an essential role in p62-regulated redox homeostasis and may be a viable target for treating pathological conditions resulting from oxidative damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Choque Térmico/metabolismo , Estrés Oxidativo , Ribonucleoproteínas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trióxido de Arsénico , Arsenicales , Muerte Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/enzimología , Hígado/patología , Lisina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/enzimología , Miocardio/patología , Oxidación-Reducción , Óxidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Interferencia de ARN , Ribonucleoproteínas/deficiencia , Ribonucleoproteínas/genética , Proteína Sequestosoma-1 , Transducción de Señal , Factores de Tiempo , Transfección
5.
BMC Geriatr ; 24(1): 653, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097684

RESUMEN

BACKGROUND: With the advent of the smart phone era, managing blood glucose at home through apps will become more common for older individuals with diabetes. Adult children play important roles in glucose management of older parents. Few studies have explored how adult children really feel about engaging in the glucose management of their older parents with type 2 diabetes mellitus (T2DM) through mobile apps. This study provides insights into the role perceptions and experiences of adult children of older parents with T2DM participating in glucose management through mobile apps. METHODS: In this qualitative study, 16 adult children of older parents with T2DM, who had used mobile apps to manage blood glucose for 6 months, were recruited through purposive sampling. Semi-structured, in-depth, face-to-face interviews to explore their role perceptions and experiences in remotely managing their older parents' blood glucose were conducted. The Consolidated Criteria for Reporting Qualitative Research (COREQ) were followed to ensure rigor in the study. The data collected were analyzed by applying Colaizzi's seven-step qualitative analysis method. RESULTS: Six themes and eight sub-themes were identified in this study. Adult children's perceived roles in glucose management of older parents with T2DM through mobile apps could be categorized into four themes: health decision-maker, remote supervisor, health educator and emotional supporter. The experiences of participation could be categorized into two themes: facilitators to participation and barriers to participation. CONCLUSION: Some barriers existed for adult children of older parents with T2DM participating in glucose management through mobile apps; however, the findings of this study were generally positive. It was beneficial and feasible for adult children to co-manage the blood glucose of older parents. Co-managing blood glucose levels in older parents with T2DM can enhance both adherence rates and confidence in managing blood glucose effectively.


Asunto(s)
Hijos Adultos , Diabetes Mellitus Tipo 2 , Aplicaciones Móviles , Padres , Investigación Cualitativa , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Persona de Mediana Edad , Padres/psicología , Hijos Adultos/psicología , Adulto , Anciano , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea/métodos , Automonitorización de la Glucosa Sanguínea/psicología
6.
World J Surg Oncol ; 22(1): 224, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192289

RESUMEN

PURPOSE: Although the potential association between autoimmune thyroiditis and papillary thyroid cancer (PTC) has been acknowledged, whether the clinicopathological features of PTC will be affected by thyroid autoantibodies remains unknown. PATIENTS AND METHODS: We conducted a case-control study to investigate the association of thyroid autoantibodies with clinicopathological characteristics of PTC in 15,305 patients (including 11,465 females and 3,840 males) from 3 medical centers in the central province of China. Logistic regression and restricted cubic spline models were performed to analyze the association of thyroid autoantibodies with clinicopathological features of PTC. RESULTS: In total, out of the 15,305 patients enrolled in this study, 10,087 (65.9%) had negative thyroid autoantibodies, while 5,218(34.1%) tested positive thyroid autoantibodies. Among these individuals, 1,530(10.0%) showed positivity for TPOAb only, 1,247(8.2%) for TGAb only and a further 2,441(15.9%) exhibited dual positivity for both TPOAb and TGAb combined. Thyroid autoantibodies level demonstrated significant correlations with certain aggressive features in PTC. Specifically, TGAb level displayed a direct correlation to an increased likelihood of multifocality, bilateral tumor, extrathyroidal extension, lymph node metastasis, as well as more than five affected lymph nodes. However, TPOAb level exhibited an inverse association with the risk associated with extrathyroidal extension, lymph node metastasis, and more than five affected lymph nodes. CONCLUSION: Elevated level of TGAb were positively correlated with the risk of aggressive features in PTC, while high level of TPOAb were inversely associated with the risk of extrathyroidal extension and lymph node metastasis.


Asunto(s)
Autoanticuerpos , Neoplasias de la Tiroides , Humanos , Femenino , Estudios de Casos y Controles , Masculino , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Persona de Mediana Edad , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/sangre , Adulto , Pronóstico , Estudios de Seguimiento , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/patología , Metástasis Linfática , Carcinoma Papilar/inmunología , Carcinoma Papilar/patología , Carcinoma Papilar/sangre , China/epidemiología , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/sangre , Adulto Joven , Anciano
7.
J Biol Chem ; 298(11): 102561, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198360

RESUMEN

Cancer cells have distinctive demands for intermediates from glucose metabolism for biosynthesis and energy in different cell cycle phases. However, how cell cycle regulators and glycolytic enzymes coordinate to orchestrate the essential metabolic processes are still poorly characterized. Here, we report a novel interaction between the mitotic kinase, Aurora A, and the glycolytic enzyme, pyruvate kinase M2 (PKM2), in the interphase of the cell cycle. We found Aurora A-mediated phosphorylation of PKM2 at threonine 45. This phosphorylation significantly attenuated PKM2 enzymatic activity by reducing its tetramerization and also promoted glycolytic flux and the branching anabolic pathways. Replacing the endogenous PKM2 with a nonphosphorylated PKM2 T45A mutant inhibited glycolysis, glycolytic branching pathways, and tumor growth in both in vitro and in vivo models. Together, our study revealed a new protumor function of Aurora A through modulating a rate-limiting glycolytic enzyme, PKM2, mainly during the S phase of the cell cycle. Our findings also showed that although both Aurora A and Aurora B kinase phosphorylate PKM2 at the same residue, the spatial and temporal regulations of the specific kinase and PKM2 interaction are context dependent, indicating intricate interconnectivity between cell cycle and glycolytic regulators.


Asunto(s)
Leucemia Mieloide Aguda , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Fosforilación , Ácido Pirúvico/metabolismo , Línea Celular Tumoral , Glucólisis , División Celular
8.
J Cell Physiol ; 238(10): 2390-2406, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642352

RESUMEN

Estrogen (E2) may impair the contraction of colonic smooth muscle (SM) leading to constipation. Large conductance Ca2+ -activated K+ channels (BKCa ) are widely expressed in the smooth muscle cells (SMCs) contributing to hyperpolarization and relaxation of SMCs. Sphingosine kinase 1 (SphK1) is known to influence the expression of BKCa . We aimed to elucidate the potential underlying molecular mechanism of BKCa and SphK1 that may influence E2-induced colonic dysmotility. In ovariectomized rats, SM contraction and expression of BKCa , SphK1, sphingosine-1-phosphate receptor (S1PR) were analyzed after the treatment with vehicle, BSA-E2, E2, and E2 receptor antagonist. The role of BKCa , SphK1, and S1PR in E2-induced SM dysmotility was investigated in rat colonic SMCs. The effect of SphK1 on SM contraction as well as on the expression of BKCa and S1PR was analyzed in SphK1 knock-out mutant mice and wild-type (WT) mice treated with or without E2. The E2-treated group exhibited a weak contraction of colonic SM and a delayed colonic transit. The treatment with E2 significantly upregulated the expression of BKCa , SphK1, S1PR1, and S1PR2, but not S1PR3, in colon SM and SMCs. Inhibition of BKCa , SphK1, S1PR1, and S1PR2 expression attenuated the effect of E2 on Ca2+ mobilization in rat colon SMCs. WT mice treated with E2 showed impaired gastrointestinal motility and enhanced expression of BKCa , S1PR1, and S1PR2 compared with those without E2 treatment. Conversely, in SphK1 knock-out mice treated with E2, these effects were partially reversed. E2 increased the release of S1P which in turn could have activated S1PR1 and S1PR2. Loss of SphK1 attenuated the effect of E2 on the upregulation of S1PR1 and S1PR2 expression. These findings indicated that E2 impaired the contraction of colon SM through activation of BKCa via the upregulation of SphK1 and the release of S1P. In the E2-induced BKCa upregulation, S1PR1 and S1PR2 might also be involved. These results may provide further insights into a therapeutic target and optional treatment approaches for patients with constipation.

9.
Ecotoxicol Environ Saf ; 251: 114548, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652742

RESUMEN

BACKGROUND: Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS: All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS: Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION: Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Telomerasa , Humanos , Cadmio/toxicidad , Volumen Espiratorio Forzado , Pulmón
10.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686469

RESUMEN

To understand the coloring mechanism in black radish, the integrated metabolome and transcriptome analyses of root skin from a black recombinant inbred line (RIL 1901) and a white RIL (RIL 1911) were carried out. A total of 172 flavonoids were detected, and the analysis results revealed that there were 12 flavonoid metabolites in radish root skin, including flavonols, flavones, and anthocyanins. The relative concentrations of most flavonoids in RIL 1901 were higher than those in RIL 1911. Meanwhile, the radish root skin also contained 16 types of anthocyanins, 12 of which were cyanidin and its derivatives, and the concentration of cyanidin 3-o-glucoside was very high at different development stages of black radish. Therefore, the accumulation of cyanidin and its derivatives resulted in the black root skin of radish. In addition, a module positively related to anthocyanin accumulation and candidate genes that regulate anthocyanin synthesis was identified by the weighted gene co-expression network analysis (WGCNA). Among them, structural genes (RsCHS, RsCHI, RsDFR, and RsUGT75C1) and transcription factors (TFs) (RsTT8, RsWRKY44L, RsMYB114, and RsMYB308L) may be crucial for the anthocyanin synthesis in the root skin of black radish. The anthocyanin biosynthesis pathway in the root skin of black radish was constructed based on the expression of genes related to flavonoid and anthocyanin biosynthesis pathways (Ko00941 and Ko00942) and the relative expressions of metabolites. In conclusion, this study not only casts new light on the synthesis and accumulation of anthocyanins in the root skin of black radish but also provides a molecular basis for accelerating the cultivation of new black radish varieties.


Asunto(s)
Antocianinas , Raphanus , Antocianinas/genética , Transcriptoma , Raphanus/genética , Flavonoides , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA