Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Med ; 22(1): 103, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454385

RESUMEN

BACKGROUND: The emergence of new SARS-CoV-2 variants and the waning of immunity raise concerns about vaccine effectiveness and protection against COVID-19. While antibody response has been shown to correlate with the risk of infection with the original variant and earlier variants of concern, the effectiveness of antibody-mediated protection against Omicron and the factors associated with protection remain uncertain. METHODS: We evaluated antibody responses to SARS-CoV-2 spike (S) and nucleocapsid (N) antigens from Wuhan and variants of concern by Luminex and their role in preventing breakthrough infections 1 year after a third dose of mRNA vaccination, in a cohort of health care workers followed since the pandemic onset in Spain (N = 393). Data were analyzed in relation to COVID-19 history, demographic factors, comorbidities, vaccine doses, brand, and adverse events. RESULTS: Higher levels of anti-S IgG and IgA to Wuhan, Delta, and Omicron were associated with protection against vaccine breakthroughs (IgG against Omicron S antigen HR, 0.06, 95%CI, 0.26-0.01). Previous SARS-CoV-2 infection was positively associated with antibody levels and protection against breakthroughs, and a longer time since last infection was associated with lower protection. In addition, priming with BNT162b2 followed by mRNA-1273 booster was associated with higher antibody responses than homologous mRNA-1273 vaccination. CONCLUSIONS: Data show that IgG and IgA induced by vaccines against the original strain or by hybrid immunization are valid correlates of protection against Omicron BA.1 despite immune escape and support the benefits of heterologous vaccination regimens to enhance antibodies and the prioritization of booster vaccination in individuals without recent infections.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2 , Vacuna BNT162 , Infección Irruptiva , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Antivirales
2.
Clin Exp Immunol ; 216(2): 172-191, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38387476

RESUMEN

Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.

3.
J Med Virol ; 96(6): e29713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874194

RESUMEN

Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence is used to estimate the proportion of individuals within a population previously infected, to track viral transmission, and to monitor naturally and vaccine-induced immune protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivitiy to SARS-CoV-2 in Africa, we measured immunoglobulin G (IgG), IgA, and IgM to a broad panel of antigens from different pathogens by Luminex in 602 plasma samples from African and European subjects differing in coronavirus disease 2019, malaria, and other exposures. Seroreactivity to SARS-CoV-2 antigens was higher in prepandemic African than in European samples and positively correlated with antibodies against human coronaviruses, helminths, protozoa, and especially Plasmodium falciparum. African subjects presented higher levels of autoantibodies, a surrogate of polyreactivity, which correlated with P. falciparum and SARS-CoV-2 antibodies. Finally, we found an improved sensitivity in the IgG assay in African samples when using urea as a chaotropic agent. In conclusion, our data suggest that polyreactive antibodies induced mostly by malaria are important mediators of the unspecific anti-SARS-CoV-2 responses, and that the use of dissociating agents in immunoassays could be useful for more accurate estimates of SARS-CoV-2 seroprevalence in African settings.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , SARS-CoV-2/inmunología , Inmunoglobulina G/sangre , Adulto , Masculino , Femenino , Persona de Mediana Edad , Malaria/epidemiología , Malaria/inmunología , Malaria/sangre , Inmunoglobulina M/sangre , Adulto Joven , Anciano , Adolescente , Europa (Continente)/epidemiología , Inmunoglobulina A/sangre , Enfermedades Endémicas , África/epidemiología , África del Sur del Sahara/epidemiología
4.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754682

RESUMEN

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Lactante , Recién Nacido , Humanos , Preescolar , Femenino , Embarazo , Plasmodium falciparum , Estudios de Cohortes , Burkina Faso/epidemiología , Exposición Materna , Placenta , Anticuerpos Antiprotozoarios , Malaria/epidemiología , Inmunoglobulina G , Antígenos de Protozoos
5.
Environ Res ; 223: 115419, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740154

RESUMEN

BACKGROUND: There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE: To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS: We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS: Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS: Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Rutenio , Humanos , COVID-19/epidemiología , Contaminantes Orgánicos Persistentes , SARS-CoV-2 , Estudios Prospectivos , Talio
6.
Environ Res ; 237(Pt 2): 116965, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652221

RESUMEN

OBJECTIVE: To investigate the specific and combined effects of personal concentrations of some per- and polyfluoroalkyl substances (PFAS), other persistent organic pollutants (POPs), and chemical elements -measured in individuals' blood several years before the pandemic- on the development of SARS-CoV-2 infection and COVID-19 disease in the general population. METHODS: We conducted a prospective cohort study in 240 individuals from the general population of Barcelona. PFAS, other POPs, and chemical elements were measured in plasma, serum, and whole blood samples, respectively, collected in 2016-2017. PFAS were analyzed by liquid chromatography-triple quadrupole mass spectrometry. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or antibody serology in blood samples collected in 2020-2021. RESULTS: No individual PFAS nor their mixtures were significantly associated with SARS-CoV-2 seropositivity or COVID-19 disease. Previously identified mixtures of POPs and elements (Porta et al., 2023) remained significantly associated with seropositivity and COVID-19 when adjusted for PFAS (all OR > 4 or p < 0.05). Nine chemicals comprised mixtures associated with COVID-19: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, other DDT-related compounds, manganese, tantalum, and aluminium. And nine chemicals comprised the mixtures more consistently associated with SARS-CoV-2 seropositivity: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, gold, and (protectively) selenium, indium, and iron. CONCLUSIONS: The PFAS studied were not associated with SARS-CoV-2 seropositivity or COVID-19. The results confirm the associations between personal blood concentrations of some POPs and chemical elements and the risk of COVID-19 and SARS-CoV-2 infection in what remains the only prospective and population-based cohort study on the topic. Mixtures of POPs and chemical elements may contribute to explain the heterogeneity in the risks of SARS-CoV-2 infection and COVID-19 in the general population.

7.
Immunology ; 167(4): 528-543, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36065677

RESUMEN

We evaluated the kinetics of antibody responses to Two years into the COVID-19 pandemic and 1 year after the start of vaccination rollout, the world faced a peak of cases associated with the highly contagious Omicron variant of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) and nucleocapsid (N) antigens over five cross-sectional visits (January-November 2021), and the determinants of pre-booster immunoglobulin levels, in a prospective cohort of vaccinated primary health care workers in Catalonia, Spain. Antibodies against S antigens after a full primary vaccination course, mostly with BNT162b2, decreased steadily over time and were higher in pre-exposed (n = 247) than naïve (n = 200) individuals, but seropositivity was maintained at 100% (100% IgG, 95.5% IgA, 30.6% IgM) up to 319 days after the first dose. Antibody binding to variants of concern was highly maintained for IgG compared to wild type but significantly reduced for IgA and IgM, particularly for Beta and Gamma. Factors significantly associated with longer-term antibodies included age, sex, occupation, smoking, adverse reaction to vaccination, levels of pre-vaccination SARS-CoV-2 antibodies, interval between disease onset and vaccination, hospitalization, oxygen supply, post COVID and symptomatology. Earlier morning vaccination hours were associated with higher IgG responses in pre-exposed participants. Symptomatic breakthroughs occurred in 9/447 (2.01%) individuals, all among naïve (9/200, 4.5%) and generally boosted antibody responses. Additionally, an increase in IgA and/or IgM seropositivity to variants, and N seroconversion at later time points (6.54%), indicated asymptomatic breakthrough infections, even among pre-exposed. Seropositivity remained highly stable over almost a year after vaccination. However, gradually waning of anti-S IgGs that correlate with neutralizing activity, coupled to evidence of an increase in breakthrough infections during the Delta and Omicron predominance, provides a rationale for booster immunization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Estudios Longitudinales , Estudios Transversales , Vacuna BNT162 , Pandemias , Estudios Prospectivos , Vacunación , Anticuerpos Antivirales , Atención Primaria de Salud , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Anticuerpos Neutralizantes
8.
BMC Med ; 20(1): 379, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36224590

RESUMEN

This study evaluated the persistence of IgM, IgA, and IgG to SARS-CoV-2 spike and nucleocapsid antigens up to 616 days since the onset of symptoms in a longitudinal cohort of 247 primary health care workers from Barcelona, Spain, followed up since the start of the pandemic. The study also assesses factors affecting antibody levels, including comorbidities and the responses to variants of concern as well as the frequency of reinfections. Despite a gradual and significant decline in antibody levels with time, seropositivity to five SARS-CoV-2 antigens combined was always higher than 90% over the whole study period. In a subset of 23 participants who had not yet been vaccinated by November 2021, seropositivity remained at 95.65% (47.83% IgM, 95.65% IgA, 95.65% IgG). IgG seropositivity against Alpha and Delta predominant variants was comparable to that against the Wuhan variant, while it was lower for Gamma and Beta (minority) variants and for IgA and IgM. Antibody levels at the time point closest to infection were associated with age, smoking, obesity, hospitalization, fever, anosmia/hypogeusia, chest pain, and hypertension in multivariable regression models. Up to 1 year later, just before the massive roll out of vaccination, antibody levels were associated with age, occupation, hospitalization, duration of symptoms, anosmia/hypogeusia, fever, and headache. In addition, tachycardia and cutaneous symptoms associated with slower antibody decay, and oxygen supply with faster antibody decay. Eight reinfections (3.23%) were detected in low responders, which is consistent with a sustained protective role for anti-spike naturally acquired antibodies. Stable persistence of IgG and IgA responses and cross-recognition of the predominant variants circulating in the 2020-2021 period indicate long-lasting and largely variant-transcending humoral immunity in the initial 20.5 months of the pandemic, in the absence of vaccination.


Asunto(s)
Ageusia , COVID-19 , Anosmia , Anticuerpos Antivirales , COVID-19/epidemiología , Humanos , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Oxígeno , Reinfección , SARS-CoV-2
9.
BMC Med ; 20(1): 347, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36109713

RESUMEN

BACKGROUND: Heterogeneity of the population in relation to infection, COVID-19 vaccination, and host characteristics is likely reflected in the underlying SARS-CoV-2 antibody responses. METHODS: We measured IgM, IgA, and IgG levels against SARS-CoV-2 spike and nucleocapsid antigens in 1076 adults of a cohort study in Catalonia between June and November 2020 and a second time between May and July 2021. Questionnaire data and electronic health records on vaccination and COVID-19 testing were available in both periods. Data on several lifestyle, health-related, and sociodemographic characteristics were also available. RESULTS: Antibody seroreversion occurred in 35.8% of the 64 participants non-vaccinated and infected almost a year ago and was related to asymptomatic infection, age above 60 years, and smoking. Moreover, the analysis on kinetics revealed that among all responses, IgG RBD, IgA RBD, and IgG S2 decreased less within 1 year after infection. Among vaccinated, 2.1% did not present antibodies at the time of testing and approximately 1% had breakthrough infections post-vaccination. In the post-vaccination era, IgM responses and those against nucleoprotein were much less prevalent. In previously infected individuals, vaccination boosted the immune response and there was a slight but statistically significant increase in responses after a 2nd compared to the 1st dose. Infected vaccinated participants had superior antibody levels across time compared to naïve-vaccinated people. mRNA vaccines and, particularly the Spikevax, induced higher antibodies after 1st and 2nd doses compared to Vaxzevria or Janssen COVID-19 vaccines. In multivariable regression analyses, antibody responses after vaccination were predicted by the type of vaccine, infection age, sex, smoking, and mental and cardiovascular diseases. CONCLUSIONS: Our data support that infected people would benefit from vaccination. Results also indicate that hybrid immunity results in superior antibody responses and infection-naïve people would need a booster dose earlier than previously infected people. Mental diseases are associated with less efficient responses to vaccination.


Asunto(s)
COVID-19 , Vacunas Virales , Formación de Anticuerpos , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19 , Estudios de Cohortes , Humanos , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Persona de Mediana Edad , Nucleoproteínas , SARS-CoV-2 , España/epidemiología , Vacunación , Vacunas Virales/farmacología
10.
Malar J ; 21(1): 176, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672772

RESUMEN

BACKGROUND: Immunoassay platforms that simultaneously detect malaria antigens including histidine-rich protein 2 (HRP2)/HRP3 and Plasmodium lactate dehydrogenase (pLDH), are useful epidemiological tools for rapid diagnostic test evaluation. This study presents the comparative evaluation of two multiplex platforms in identifying Plasmodium falciparum with presence or absence of HRP2/HRP3 expression as being indicative of hrp2/hrp3 deletions and other Plasmodium species. Moreover, correlation between the malaria antigen measurements performed at these platforms is assessed after calibrating with either assay standards or international standards and the cross-reactivity among Plasmodium species is examined. METHODS: A 77-member panel of specimens composed of the World Health Organization (WHO) international Plasmodium antigen standards, cultured parasites for P. falciparum and Plasmodium knowlesi, and clinical specimens with mono-infections for P. falciparum, Plasmodium vivax, and Plasmodium malariae was generated as both whole blood and dried blood spot (DBS) specimens. Assays for HRP2, P. falciparum-specific pLDH (PfLDH), P. vivax-specific pLDH (PvLDH), and all human Plasmodium species Pan malaria pLDH (PanLDH) on the Human Malaria Array Q-Plex and the xMAP platforms were evaluated with these panels. RESULTS: The xMAP showed a higher percent positive agreement for identification of hrp2-deleted P. falciparum and Plasmodium species in whole blood and DBS than the Q-Plex. For whole blood samples, there was a highly positive correlation between the two platforms for PfLDH (Pearson r = 0.9926) and PvLDH (r = 0. 9792), moderate positive correlation for HRP2 (r = 0.7432), and poor correlation for PanLDH (r = 0.6139). In Pearson correlation analysis between the two platforms on the DBS, the same assays were r = 0.9828, r = 0.7679, r = 0.6432, and r = 0.8957, respectively. The xMAP HRP2 assay appeared to cross-react with HRP3, while the Q-Plex did not. The Q-Plex PfLDH assay cross-reacted with P. malariae, while the xMAP did not. For both platforms, P. knowlesi was detected on the PvLDH assay. The WHO international standards allowed normalization across both platforms on their HRP2, PfLDH, and PvLDH assays in whole blood and DBS. CONCLUSIONS: Q-Plex and xMAP show good agreement for identification of P. falciparum mutants with hrp2/hrp3 deletions, and other Plasmodium species. Quantitative results from both platforms, normalized into international units for HRP2, PfLDH, and PvLDH, showed good agreement and should allow comparison and analysis of results generated by either platform.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Plasmodium knowlesi , Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina/métodos , Humanos , Inmunoensayo , L-Lactato Deshidrogenasa/análisis , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Malaria Vivax/diagnóstico , Plasmodium falciparum , Proteínas Protozoarias , Sensibilidad y Especificidad
11.
J Infect Dis ; 223(1): 62-71, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33175145

RESUMEN

BACKGROUND: At the COVID-19 spring 2020 pandemic peak in Spain, prevalence of SARS-CoV-2 infection in a cohort of 578 randomly selected health care workers (HCWs) from Hospital Clínic de Barcelona was 11.2%. METHODS: A follow-up survey 1 month later (April-May 2020) measured infection by rRT-PCR and IgM, IgA, and IgG to the receptor-binding domain of the spike protein by Luminex. Antibody kinetics, including IgG subclasses, was assessed until month 3. RESULTS: At month 1, the prevalence of infection measured by rRT-PCR and serology was 14.9% (84/565) and seroprevalence 14.5% (82/565). We found 25 (5%) new infections in 501 participants without previous evidence of infection. IgM, IgG, and IgA levels declined in 3 months (antibody decay rates 0.15 [95% CI, .11-.19], 0.66 [95% CI, .54-.82], and 0.12 [95% CI, .09-.16], respectively), and 68.33% of HCWs had seroreverted for IgM, 3.08% for IgG, and 24.29% for IgA. The most frequent subclass responses were IgG1 (highest levels) and IgG2, followed by IgG3, and only IgA1 but no IgA2 was detected. CONCLUSIONS: Continuous and improved surveillance of SARS-CoV-2 infections in HCWs remains critical, particularly in high-risk groups. The observed fast decay of IgA and IgM levels has implications for seroprevalence studies using these isotypes.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Personal de Salud , Adulto , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Cinética , Masculino , Persona de Mediana Edad , Seroconversión , Estudios Seroepidemiológicos , España/epidemiología
12.
Emerg Infect Dis ; 27(2): 430-442, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496227

RESUMEN

Severe malaria (SM) is a major public health problem in malaria-endemic countries. Sequestration of Plasmodium falciparum-infected erythrocytes in vital organs and the associated inflammation leads to organ dysfunction. MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of SM. We applied next-generation sequencing to evaluate the differential expression of miRNAs in SM and in uncomplicated malaria (UM) in children in Mozambique. Six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. Relative expression of hsa-miR-4497 quantified by TaqMan-quantitative reverse transcription PCR was higher in plasma of children with SM than those with UM (p<0.048) and again correlated with P. falciparum biomass (p = 0.033). These findings suggest that different physiopathological processes in SM and UM lead to differential expression of miRNAs and suggest a pathway for assessing their prognostic value malaria.


Asunto(s)
Malaria Falciparum , Malaria , MicroARNs , Biomasa , Niño , Humanos , MicroARNs/genética , Mozambique , Plasmodium falciparum/genética
13.
BMC Med ; 19(1): 309, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34809617

RESUMEN

BACKGROUND: Surveillance tools to estimate viral transmission dynamics in young populations are essential to guide recommendations for school opening and management during viral epidemics. Ideally, sensitive techniques are required to detect low viral load exposures among asymptomatic children. We aimed to estimate SARS-CoV-2 infection rates in children and adult populations in a school-like environment during the initial COVID-19 pandemic waves using an antibody-based field-deployable and non-invasive approach. METHODS: Saliva antibody conversion defined as ≥ 4-fold increase in IgM, IgA, and/or IgG levels to five SARS-CoV-2 antigens including spike and nucleocapsid constructs was evaluated in 1509 children and 396 adults by high-throughput Luminex assays in samples collected weekly in 22 summer schools and 2 pre-schools in 27 venues in Barcelona, Spain, from June 29th to July 31st, 2020. RESULTS: Saliva antibody conversion between two visits over a 5-week period was 3.22% (49/1518) or 2.36% if accounting for potentially cross-reactive antibodies, six times higher than the cumulative infection rate (0.53%) assessed by weekly saliva RT-PCR screening. IgG conversion was higher in adults (2.94%, 11/374) than children (1.31%, 15/1144) (p=0.035), IgG and IgA levels moderately increased with age, and antibodies were higher in females. Most antibody converters increased both IgG and IgA antibodies but some augmented either IgG or IgA, with a faster decay over time for IgA than IgG. Nucleocapsid rather than spike was the main antigen target. Anti-spike antibodies were significantly higher in individuals not reporting symptoms than symptomatic individuals, suggesting a protective role against COVID-19. CONCLUSION: Saliva antibody profiling including three isotypes and multiplexing antigens is a useful and user-friendlier tool for screening pediatric populations to detect low viral load exposures among children, particularly while they are not vaccinated and vulnerable to highly contagious variants, and to recommend public health policies during pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Antivirales , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina G , Pandemias , Saliva , Instituciones Académicas , España/epidemiología , Glicoproteína de la Espiga del Coronavirus
14.
J Clin Microbiol ; 59(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33127841

RESUMEN

Reliable serological tests are required to determine the prevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to characterize immunity to the disease in order to address key knowledge gaps in the coronavirus disease 2019 (COVID-19) pandemic. Quantitative suspension array technology (qSAT) assays based on the xMAP Luminex platform overcome the limitations of rapid diagnostic tests and enzyme-linked immunosorbent assays (ELISAs) with their higher precision, dynamic range, throughput, miniaturization, cost-efficiency, and multiplexing capacity. We developed three qSAT assays for IgM, IgA, and IgG against a panel of eight SARS-CoV-2 antigens, including spike protein (S), nucleocapsid protein (N), and membrane protein (M) constructs. The assays were optimized to minimize the processing time and maximize the signal-to-noise ratio. We evaluated their performances using 128 prepandemic plasma samples (negative controls) and 104 plasma samples from individuals with SARS-CoV-2 diagnosis (positive controls), of whom 5 were asymptomatic, 51 had mild symptoms, and 48 were hospitalized. Preexisting IgG antibodies recognizing N, M, and S proteins were detected in negative controls, which is suggestive of cross-reactivity to common-cold coronaviruses. The best-performing antibody/antigen signatures had specificities of 100% and sensitivities of 95.78% at ≥14 days and 95.65% at ≥21 days since the onset of symptoms, with areas under the curve (AUCs) of 0.977 and 0.999, respectively. Combining multiple markers as assessed by qSAT assays has the highest efficiency, breadth, and versatility to accurately detect low-level antibody responses for obtaining reliable data on the prevalence of exposure to novel pathogens in a population. Our assays will allow gaining insights into antibody correlates of immunity and their kinetics, required for vaccine development to combat the COVID-19 pandemic.


Asunto(s)
Antígenos Virales/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Isotipos de Inmunoglobulinas/sangre , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/sangre , COVID-19/sangre , Reacciones Cruzadas , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Proteínas Estructurales Virales/inmunología
15.
Malar J ; 19(1): 12, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918718

RESUMEN

BACKGROUND: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.


Asunto(s)
Antígenos de Protozoos/sangre , L-Lactato Deshidrogenasa/sangre , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Proteínas Protozoarias/sangre , Adolescente , Adulto , África , Animales , Biotina , Calibración , Niño , Estudios Transversales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Malaria Falciparum/sangre , Malaria Vivax/sangre , Ratones , Microesferas , Parasitemia/sangre , Parasitemia/diagnóstico , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , América del Sur , España , Adulto Joven
16.
Clin Infect Dis ; 69(5): 820-828, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30380038

RESUMEN

BACKGROUND: The effect of timing of exposure to first Plasmodium falciparum infections during early childhood on the induction of innate and adaptive cytokine responses and their contribution to the development of clinical malaria immunity is not well established. METHODS: As part of a double-blind, randomized, placebo-controlled trial in Mozambique using monthly chemoprophylaxis with sulfadoxine-pyrimethamine plus artesunate to selectively control timing of malaria exposure during infancy, peripheral blood mononuclear cells collected from participants at age 2.5, 5.5, 10.5, 15, and 24 months were stimulated ex vivo with parasite schizont and erythrocyte lysates. Cytokine messenger RNA expressed in cell pellets and proteins secreted in supernatants were quantified by reverse-transcription quantitative polymerase chain reaction and multiplex flow cytometry, respectively. Children were followed up for clinical malaria from birth until 4 years of age. RESULTS: Higher proinflammatory (interleukin [IL] 1, IL-6, tumor necrosis factor) and regulatory (IL-10) cytokine concentrations during the second year of life were associated with reduced incidence of clinical malaria up to 4 years of age, adjusting by chemoprophylaxis and prior malaria exposure. Significantly lower concentrations of antigen-specific T-helper 1 (IL-2, IL-12, interferon-γ) and T-helper 2 (IL-4, IL-5) cytokines by 2 years of age were measured in children undergoing chemoprophylaxis compared to children receiving placebo (P < .03). CONCLUSIONS: Selective chemoprophylaxis altering early natural exposure to malaria blood stage antigens during infancy had a significant effect on T-helper lymphocyte cytokine production >1 year later. Importantly, a balanced proinflammatory and anti-inflammatory cytokine signature, probably by innate cells, around age 2 years was associated with protective clinical immunity during childhood. CLINICAL TRIALS REGISTRATION: NCT00231452.


Asunto(s)
Citocinas/sangre , Leucocitos Mononucleares/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Extractos Celulares/farmacología , Quimioprevención , Preescolar , Citocinas/inmunología , Método Doble Ciego , Eritrocitos/química , Humanos , Lactante , Recién Nacido , Inflamación , Leucocitos Mononucleares/efectos de los fármacos , Mozambique , Pirimetamina/uso terapéutico , Factores de Riesgo , Esquizontes , Sulfadoxina/uso terapéutico , Transcriptoma
17.
Emerg Infect Dis ; 25(10): 1851-1860, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31538557

RESUMEN

Pregnant women constitute a promising sentinel group for continuous monitoring of malaria transmission. To identify antibody signatures of recent Plasmodium falciparum exposure during pregnancy, we dissected IgG responses against VAR2CSA, the parasite antigen that mediates placental sequestration. We used a multiplex peptide-based suspension array in 2,354 samples from pregnant women from Mozambique, Benin, Kenya, Gabon, Tanzania, and Spain. Two VAR2CSA peptides of limited polymorphism were immunogenic and targeted by IgG responses readily boosted during infection and with estimated half-lives of <2 years. Seroprevalence against these peptides reflected declines and rebounds of transmission in southern Mozambique during 2004-2012, reduced exposure associated with use of preventive measures during pregnancy, and local clusters of transmission that were missed by detection of P. falciparum infections. These data suggest that VAR2CSA serology can provide a useful adjunct for the fine-scale estimation of the malaria burden among pregnant women over time and space.


Asunto(s)
Antígenos de Protozoos/sangre , Malaria Falciparum/complicaciones , Complicaciones Parasitarias del Embarazo/epidemiología , Adulto , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Benin/epidemiología , Femenino , Gabón/epidemiología , Humanos , Inmunoglobulina G/inmunología , Kenia/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Mozambique/epidemiología , Plasmodium falciparum/inmunología , Embarazo , Complicaciones Parasitarias del Embarazo/sangre , Complicaciones Parasitarias del Embarazo/diagnóstico , Pruebas Serológicas/métodos , España/epidemiología , Tanzanía/epidemiología , Adulto Joven
18.
BMC Med ; 17(1): 157, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31409398

RESUMEN

BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Plasmodium falciparum/inmunología , Vacunación/métodos
19.
Clin Infect Dis ; 66(4): 586-593, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29401272

RESUMEN

Background: A main criterion to identify malaria vaccine candidates is the proof that acquired immunity against them is associated with protection from disease. The age of the studied individuals, heterogeneous malaria exposure, and assumption of the maintenance of a baseline immune response can confound these associations. Methods: Immunoglobulin G/immunoglobulin M (IgG/ IgM) levels were measured by Luminex® in Mozambican children monitored for clinical malaria from birth until 3 years of age, together with functional antibodies. Studied candidates were pre-erythrocytic and erythrocytic antigens, including EBAs/PfRhs, MSPs, DBLs, and novel antigens merely or not previously studied in malaria-exposed populations. Cox regression models were estimated at 9 and 24 months of age, accounting for heterogeneous malaria exposure or limiting follow-up according to the antibody's decay. Results: Associations of antibody responses with higher clinical malaria risk were avoided when accounting for heterogeneous malaria exposure or when limiting the follow-up time in the analyses. Associations with reduced risk of clinical malaria were found only at 24 months old, but not younger children, for IgG breadth and levels of IgG targeting EBA140III-V, CyRPA, DBL5ε and DBL3x, together with C1q-fixation activity by antibodies targeting MSP119. Conclusions: Malaria protection correlates were identified, only in children aged 24 months old when accounting for heterogeneous malaria exposure. These results highlight the relevance of considering age and malaria exposure, as well as the importance of not assuming the maintenance of a baseline immune response throughout the follow-up. Results may be misleading if these factors are not considered.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunoglobulina G/inmunología , Malaria Falciparum/inmunología , Inmunidad Adaptativa , Factores de Edad , Antígenos de Protozoos/inmunología , Preescolar , Femenino , Humanos , Inmunoglobulina M/inmunología , Lactante , Recién Nacido , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Masculino , Mozambique , Plasmodium falciparum , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de Regresión
20.
N Engl J Med ; 373(17): 1607-17, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26488692

RESUMEN

BACKGROUND: Prevention of reinfection and resurgence is an integral component of the goal to eradicate malaria. However, the adverse effects of malaria resurgences are not known. METHODS: We assessed the prevalence of Plasmodium falciparum infection among 1819 Mozambican women who delivered infants between 2003 and 2012. We used microscopic and histologic examination and a quantitative polymerase-chain-reaction (qPCR) assay, as well as flow-cytometric analysis of IgG antibody responses against two parasite lines. RESULTS: Positive qPCR tests for P. falciparum decreased from 33% in 2003 to 2% in 2010 and increased to 6% in 2012, with antimalarial IgG antibody responses mirroring these trends. Parasite densities in peripheral blood on qPCR assay were higher in 2010-2012 (geometric mean [±SD], 409±1569 genomes per microliter) than in 2003-2005 (44±169 genomes per microliter, P=0.02), as were parasite densities in placental blood on histologic assessment (50±39% of infected erythrocytes vs. 4±6%, P<0.001). The malaria-associated reduction in maternal hemoglobin levels was larger in 2010-2012 (10.1±1.8 g per deciliter in infected women vs. 10.9±1.7 g per deciliter in uninfected women; mean difference, -0.82 g per deciliter; 95% confidence interval [CI], -1.39 to -0.25) than in 2003-2005 (10.5±1.1 g per deciliter vs. 10.6±1.5 g per deciliter; difference, -0.12 g per deciliter; 95% CI, -0.67 to 0.43), as was the reduction in birth weight (2863±440 g in women with past or chronic infections vs. 3070±482 g in uninfected women in 2010-2012; mean difference, -164.5 g; 95% CI, -289.7 to -39.4; and 2994±487 g vs. 3117±455 g in 2003-2005; difference, -44.8 g; 95% CI, -139.1 to 49.5). CONCLUSIONS: Antimalarial antibodies were reduced and the adverse consequences of P. falciparum infections were increased in pregnant women after 5 years of a decline in the prevalence of malaria. (Funded by Malaria Eradication Scientific Alliance and others.).


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Complicaciones Infecciosas del Embarazo/epidemiología , Adulto , Costo de Enfermedad , Femenino , Humanos , Inmunoglobulina G/sangre , Malaria Falciparum/clasificación , Mozambique/epidemiología , Carga de Parásitos , Paridad , Plasmodium falciparum/aislamiento & purificación , Embarazo , Complicaciones Infecciosas del Embarazo/clasificación , Complicaciones Infecciosas del Embarazo/inmunología , Prevalencia , Índice de Severidad de la Enfermedad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA