Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(4): 679-692.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475896

RESUMEN

The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/virología , ARN Polimerasa II/metabolismo , Células A549 , Animales , Inmunoprecipitación de Cromatina , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Humanos , Espectrometría de Masas , Ratones , Mutación , Enfermedades Neurodegenerativas/virología , Proteínas de Unión al ARN/genética , Ribosomas/genética , Transcripción Genética
2.
PLoS Pathog ; 19(1): e1011070, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603024

RESUMEN

Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.


Asunto(s)
Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Humanos , Encéfalo/metabolismo , Encéfalo/virología , Células-Madre Neurales/virología , ARN Helicasas/genética , ARN Helicasas/metabolismo , Transactivadores/metabolismo , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/genética
3.
Mol Cell Proteomics ; 22(5): 100541, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019383

RESUMEN

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease. While neurons generally produce a minority of the apoE in the central nervous system, neuronal expression of apoE increases dramatically in response to stress and is sufficient to drive pathology. Currently, the molecular mechanisms of how apoE4 expression may regulate pathology are not fully understood. Here, we expand upon our previous studies measuring the impact of apoE4 on protein abundance to include the analysis of protein phosphorylation and ubiquitylation signaling in isogenic Neuro-2a cells expressing apoE3 or apoE4. ApoE4 expression resulted in a dramatic increase in vasodilator-stimulated phosphoprotein (VASP) S235 phosphorylation in a protein kinase A (PKA)-dependent manner. This phosphorylation disrupted VASP interactions with numerous actin cytoskeletal and microtubular proteins. Reduction of VASP S235 phosphorylation via PKA inhibition resulted in a significant increase in filopodia formation and neurite outgrowth in apoE4-expressing cells, exceeding levels observed in apoE3-expressing cells. Our results highlight the pronounced and diverse impact of apoE4 on multiple modes of protein regulation and identify protein targets to restore apoE4-related cytoskeletal defects.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Actinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Fosforilación , Proteómica , Animales , Ratones
4.
J Biol Chem ; 297(1): 100907, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166681

RESUMEN

Endosomal signaling downstream of G-protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. However, our knowledge of the functional consequences of intracellular signaling is incomplete. To begin to address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger generated by active GPCRs, cyclic AMP (cAMP), with unbiased mass-spectrometry-based analysis of the phosphoproteome. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP elevation. We next determined that the same amount of cAMP produced from the endosomal membrane led to more robust changes in phosphorylation than the plasma membrane. Remarkably, this was true for the entire repertoire of 218 identified targets and irrespective of their annotated subcellular localizations (endosome, cell surface, nucleus, cytosol). Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A by cAMP-responsive kinases as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness to cAMP by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.


Asunto(s)
AMP Cíclico/metabolismo , Endosomas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Animales , Células HEK293 , Humanos , Fosfoproteínas/química , Fosforilación , Dominios Proteicos , Proteína Fosfatasa 2/metabolismo , Proteoma/química
5.
Genesis ; 53(8): 523-534, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26088819

RESUMEN

dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently, dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system.


Asunto(s)
Curaduría de Datos/métodos , Bases de Datos Genéticas , Dictyostelium/genética , Programas Informáticos , Animales , Curaduría de Datos/normas , Dictyostelium/metabolismo , Estudios de Asociación Genética , Anotación de Secuencia Molecular/métodos , Anotación de Secuencia Molecular/normas
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 48-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24419378

RESUMEN

The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.


Asunto(s)
Lisina/análisis , Proteínas/química , Algoritmos , Animales , Biología Computacional , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Lisina/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo
7.
Mol Biol Cell ; 35(3): ar27, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117589

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella-containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.


Asunto(s)
Legionella pneumophila , Proteínas de Unión al GTP Monoméricas , Animales , Legionella pneumophila/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Bacterianas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Vacuolas/metabolismo , Ligasas/metabolismo , Mamíferos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38918936

RESUMEN

Mass spectrometry is a powerful technique for analyzing molecules in complex biological samples. However, inter- and intralaboratory variability and bias can affect the data due to various factors, including sample handling and preparation, instrument calibration and performance, and data acquisition and processing. To address this issue, the Quality Control (QC) working group of the Human Proteome Organization's Proteomics Standards Initiative has established the standard mzQC file format for reporting and exchanging information relating to data quality. mzQC is based on the JavaScript Object Notation (JSON) format and provides a lightweight yet versatile file format that can be easily implemented in software. Here, we present open-source software libraries to process mzQC data in three programming languages: Python, using pymzqc; R, using rmzqc; and Java, using jmzqc. The libraries follow a common data model and provide shared functionalities, including the (de)serialization and validation of mzQC files. We demonstrate use of the software libraries in a workflow for extracting, analyzing, and visualizing QC metrics from different sources. Additionally, we show how these libraries can be integrated with each other, with existing software tools, and in automated workflows for the QC of mass spectrometry data. All software libraries are available as open source under the MS-Quality-Hub organization on GitHub (https://github.com/MS-Quality-Hub).

9.
Nat Metab ; 6(5): 963-979, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693320

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.


Asunto(s)
Tejido Adiposo Blanco , Condicionamiento Físico Animal , Caracteres Sexuales , Grasa Subcutánea , Animales , Masculino , Femenino , Ratas , Tejido Adiposo Blanco/metabolismo , Grasa Subcutánea/metabolismo , Adipogénesis , Ratas Sprague-Dawley , Multiómica
10.
Cell Metab ; 36(6): 1411-1429.e10, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38701776

RESUMEN

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.


Asunto(s)
Mitocondrias , Condicionamiento Físico Animal , Animales , Masculino , Femenino , Mitocondrias/metabolismo , Ratas , Músculo Esquelético/metabolismo , Humanos , Ratas Sprague-Dawley , Tejido Adiposo Pardo/metabolismo , Glándulas Suprarrenales/metabolismo , Multiómica
11.
Biochim Biophys Acta ; 1818(4): 927-41, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22051023

RESUMEN

We discuss recent progresses in computational studies of membrane proteins based on physical models with parameters derived from bioinformatics analysis. We describe computational identification of membrane proteins and prediction of their topology from sequence, discovery of sequence and spatial motifs, and implications of these discoveries. The detection of evolutionary signal for understanding the substitution pattern of residues in the TM segments and for sequence alignment is also discussed. We further discuss empirical potential functions for energetics of inserting residues in the TM domain, for interactions between TM helices or strands, and their applications in predicting lipid-facing surfaces of the TM domain. Recent progresses in structure predictions of membrane proteins are also reviewed, with further discussions on calculation of ensemble properties such as melting temperature based on simplified state space model. Additional topics include prediction of oligomerization state of membrane proteins, identification of the interfaces for protein-protein interactions, and design of membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.


Asunto(s)
Biología Computacional/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Unión Proteica
12.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577546

RESUMEN

The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.

13.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778330

RESUMEN

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training. Multi-omic analyses of adipose tissue integrated with phenotypic measures identified sex-specific training responses including enrichment of mTOR signaling in females, while males displayed enhanced mitochondrial ribosome biogenesis and oxidative metabolism. Overall, this study reinforces our understanding that sex impacts scWAT biology and provides a rich resource to interrogate responses of scWAT to endurance training.

14.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711881

RESUMEN

Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.

15.
Eur Biophys J ; 41(5): 449-60, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22484856

RESUMEN

Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.


Asunto(s)
Dominio Catalítico , Enzimas/química , Enzimas/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Biología Computacional , Concentración de Iones de Hidrógeno , Líquidos Iónicos/química , Canales de Sodio/química , Canales de Sodio/metabolismo , Electricidad Estática
16.
Elife ; 112022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107481

RESUMEN

In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.


Asunto(s)
Ácido Láctico , Proteómica , Animales , Blastocisto/metabolismo , ADN/metabolismo , Desarrollo Embrionario/genética , Fertilización In Vitro/métodos , Glutatión/metabolismo , Lactato Deshidrogenasas/metabolismo , Ácido Láctico/metabolismo , Lípidos , Ratones , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
mBio ; 13(1): e0272621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073755

RESUMEN

Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Escherichia coli , Proteómica , Bacterias , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Pruebas de Sensibilidad Microbiana
18.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042219

RESUMEN

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Genoma Viral , Estudio de Asociación del Genoma Completo , Humanos , SARS-CoV-2/genética
19.
Cell Rep ; 36(12): 109742, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551310

RESUMEN

Cold-induced thermogenesis in endotherms demands adaptive thermogenesis fueled by mitochondrial respiration and Ucp1-mediated uncoupling in multilocular brown adipocytes (BAs). However, dietary regulation of thermogenesis in BAs isn't fully understood. Here, we describe that the deficiency of Leucine-rich pentatricopeptide repeat containing-protein (Lrpprc) in BAs reduces mtDNA-encoded ETC gene expression, causes ETC proteome imbalance, and abolishes the mitochondria-fueled thermogenesis. BA-specific Lrpprc knockout mice are cold resistant in a 4°C cold-tolerance test in the presence of food, which is accompanied by the activation of transcription factor 4 (ATF4) and proteome turnover in BAs. ATF4 activation genetically by BA-specific ATF4 overexpression or physiologically by a low-protein diet feeding can improve cold tolerance in wild-type and Ucp1 knockout mice. Furthermore, ATF4 activation in BAs improves systemic metabolism in obesogenic environment regardless of Ucp1's action. Therefore, our study reveals a diet-dependent but Ucp1-independent thermogenic mechanism in BAs that is relevant to systemic thermoregulation and energy homeostasis.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Animales , Peso Corporal , Frío , Dieta/veterinaria , Metabolismo Energético , Femenino , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Termogénesis/genética , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Yodotironina Deyodinasa Tipo II
20.
Circ Genom Precis Med ; 14(6): e003419, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802252

RESUMEN

BACKGROUND: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. METHODS: Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used co-immunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. RESULTS: Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 (alpha-actinin 1) and GJA1 (gap junction protein alpha 1), 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. CONCLUSIONS: Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.


Asunto(s)
Actinina , Cardiomiopatías , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Sarcómeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA