Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neuroimage ; 277: 120243, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37353098

RESUMEN

Characterizing human thalamocortical network is fundamental for understanding a vast array of human behaviors since the thalamus plays a central role in cortico-subcortical communication. Over the past few decades, advances in functional magnetic resonance imaging have allowed for spatial mapping of intrinsic resting-state functional connectivity (RSFC) between both cortical regions and in cortico-subcortical networks. Despite these advances, identifying the electrophysiological basis of human thalamocortical network architecture remains challenging. By leveraging stereoelectroencephalography electrodes temporarily implanted into distributed cortical regions and the anterior nucleus of the thalamus (ANT) of 10 patients with refractory focal epilepsy, we tested whether ANT stimulation evoked cortical potentials align with RSFC from the stimulation site, derived from a normative functional connectome (n = 1000). Our study identifies spatial convergence of ANT stimulation evoked cortical potentials and normative RSFC. Other than connections to the Papez circuit, the ANT was found to be closely connected to several distinct higher-order association cortices, including the precuneus, angular gyrus, dorsal lateral prefrontal cortex, and anterior insula. Remarkably, we found that the spatial distribution and magnitude of cortical-evoked responses to single-pulse electrical stimulation of the ANT aligned with the spatial pattern and strength of normative RSFC of the stimulation site. The present study provides electrophysiological evidence that stimulation evoked electrical activity flows along intrinsic brain networks connected on a thalamocortical level.


Asunto(s)
Núcleos Talámicos Anteriores , Epilepsias Parciales , Humanos , Corteza Cerebral/fisiología , Lóbulo Parietal , Imagen por Resonancia Magnética , Estimulación Eléctrica , Potenciales Evocados/fisiología
2.
Behav Brain Funct ; 19(1): 17, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784181

RESUMEN

BACKGROUND: Emerging evidence suggests bidirectional causal relationships between sleep disturbance and psychiatric disorders, but the underlying mechanisms remain unclear. Understanding the bidirectional causality between sleep traits and brain imaging-derived phenotypes (IDPs) will help elucidate the mechanisms. Although previous studies have identified a range of structural differences in the brains of individuals with sleep disorders, it is still uncertain whether grey matter (GM) volume alterations precede or rather follow from the development of sleep disorders. RESULTS: After Bonferroni correction, the forward MR analysis showed that insomnia complaint remained positively associated with the surface area (SA) of medial orbitofrontal cortex (ß, 0.26; 95% CI, 0.15-0.37; P = 5.27 × 10-6). In the inverse MR analysis, higher global cortical SA predisposed individuals less prone to suffering insomnia complaint (OR, 0.89; 95%CI, 0.85-0.94; P = 1.51 × 10-5) and short sleep (≤ 6 h; OR, 0.98; 95%CI, 0.97-0.99; P = 1.51 × 10-5), while higher SA in posterior cingulate cortex resulted in a vulnerability to shorter sleep durations (ß, - 0.09; 95%CI, - 0.13 to - 0.05; P = 1.21 × 10-5). CONCLUSIONS: Sleep habits not only result from but also contribute to alterations in brain structure, which may shed light on the possible mechanisms linking sleep behaviours with neuropsychiatric disorders, and offer new strategies for prevention and intervention in psychiatric disorders and sleep disturbance.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Análisis de la Aleatorización Mendeliana , Encéfalo/diagnóstico por imagen , Sueño/genética , Trastornos del Sueño-Vigilia/genética , Fenotipo , Estudio de Asociación del Genoma Completo
3.
Compr Rev Food Sci Food Saf ; 22(3): 1902-1932, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880579

RESUMEN

Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.


Asunto(s)
Microbiota , Fermentación , Alimentos , Microbiología de Alimentos
4.
Foods ; 13(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39335930

RESUMEN

Solid-state fermentation (SSF) system involves solid, liquid, and gas phases, characterized by complex mass and heat transfer mechanisms and microbial complex interactions. The SSF processes for traditional Chinese fermented foods, such as vinegar, soy sauce, and baijiu primarily rely on experience, and most of the operations are replaced by auto machine now. However, there is still a lack of engineering in-depth study of the microbial process of SSF for complete process control. To meet the demands of smart manufacturing and green production, this paper emphasizes the engineering analysis of the mechanisms behind SSF. It reviews the progress in the engineering aspects of Chinese traditional SSF, including raw material pretreatment, process parameter detection, mathematical model construction, and equipment innovation. Additionally, it summarizes the challenges faced during intelligent upgrades and the opportunities brought by scientific and technological advancements, proposing future development directions. This review provides an overview of the SSF engineering aspects, offering a reference for the intelligent transformation and sustainable development of the Chinese traditional SSF food industry.

5.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731688

RESUMEN

Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations.

6.
J Cent Nerv Syst Dis ; 16: 11795735241237627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449707

RESUMEN

Hypothalamic hamartomas (HHs) are congenital developmental malformations located in the hypothalamus. They are associated with a characteristic clinical manifestation known as gelastic seizures (GS). However, the traditional understanding of HHs has been limited, resulting in insufficient treatment options and high recurrence rates of seizures after surgery. This is consistent with the network hypothesis of focal epilepsy that the epileptogenic zone is not only limited to HH but may also involve the distant cerebral cortex external to the HH mass. The epilepsy network theory, on the other hand, provides a new perspective. In this study, we aim to explore HH-related epilepsy as a network disease, challenging the conventional notion of being a focal lesional disease. We analyze various aspects of HHs, including genes and signaling pathways, local circuits, the whole-brain level, phenotypical expression in terms of seizure semiology, and comorbidities. By examining HHs through the lens of network theory, we can enhance our understanding of the condition and potentially identify novel approaches for more effective management and treatment of epilepsy associated with HHs.


Hypothalamic hamartomas (HHs) are unusual brain malformations present from birth in the hypothalamus region. They often lead to a distinctive type of seizures known as GSs. However, our current understanding of HHs is limited, and this has made it challenging to treat them effectively. Many patients continue to experience seizures even after surgery. We've typically considered HH-related epilepsy as a localized problem, but a new theory suggests that it may involve a network of brain areas. In our study, we aim to change the way we view HH-related epilepsy. Instead of thinking of it as a single lesion in the brain, we explore the idea that it's a network disease. To do this, we'll investigate various aspects of HHs, such as the genes and pathways involved, how different parts of the brain interact, the impact on the whole brain, the types of seizures experienced, and any related health issues. By looking at HHs through this network theory, we hope to gain a deeper understanding of the condition and potentially discover new ways to manage and treat epilepsy associated with HHs. This shift in perspective could offer hope to those living with HH-related epilepsy and lead to more effective treatments, ultimately improving their quality of life.

7.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254531

RESUMEN

Solid-state distillation is a distinctive process for extracting the baijiu aroma compounds that determine the flavor character of baijiu. In this study, the changes in various chemical properties of the aroma compounds in three classical Jiangxiangxing baijiu fermented grain distillation processes were analyzed. The changes in the aroma compounds in the instantaneous distillates were quantified and correlation analyzes were conducted. The results showed that the effect of the aroma compounds was greater than the differences between the fermented grains. Eleven representative aroma compounds were selected to develop the kinetic models describing two opposing changes. For the regulation of the Jiangxiangxing baijiu aroma compounds, their recovery rates were calculated using a kinetic model. A comprehensive comparison of the recovery rates of the characteristic aroma and other aroma compounds at different cut-off values revealed that the optimum recovery rate of the characteristic aroma of Jiangxiangxing baijiu 2,3,5,6-tetramethylpyrazine was 14.53% at cut-off values of 3.9 and 19.8 min. In this study, representative changes in the aroma compounds and the selection of cut-off values to regulate the baijiu distillation aroma were proposed.

8.
Brain Commun ; 5(2): fcad071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056477

RESUMEN

Vertigo is a common neurological complaint, which can result in significant morbidity and decreased quality of life. While pathology to peripheral and subtentorial brain structures is a well-established cause of vertigo, cortical lesions have also been linked to vertigo and may lend insight into relevant neuroanatomy. Here, we investigate the supratentorial lesion locations associated with vertigo and test whether they map to a common brain network. We performed a systematic literature search and identified 23 cases of supratentorial brain lesions associated with vertigo. We mapped the lesion locations to a standard brain template and computed the network of brain regions functionally connected to each lesion location, using a 'wiring diagram' of the human brain termed the human connectome (n = 1000). Sensitivity was assessed by identifying the most common connection to lesion locations associated with vertigo, and specificity was assessed through comparison with control lesions associated with symptoms other than vertigo (n = 68). We found that functional connectivity between lesion locations and the bilateral ventral posterior insula was both sensitive (22/23 lesions) and specific (voxel-wise family-wise error-corrected P < 0.05) for lesion-induced vertigo. We computed connectivity with this hub region to define a lesion-based vertigo network, which included regions in the bilateral insula, somatosensory cortex, higher-level visual areas, cingulate sulcus, thalamus and multiple cerebellar regions in the territory of the posterior inferior cerebellar artery. Next, we used stereo-electroencephalography (80 stimulation sites across 17 patients) to test whether stimulation sites associated with vertigo mapped to this same network. We found that 36/42 (86%) of stimulation sites eliciting vertigo fell within the lesion-based vertigo network in contrast to 16/39 (41%) of stimulation sites that did not elicit vertigo. Connectivity between stimulation sites and our lesion-based hub in the ventral posterior insula was also significantly associated with vertigo (P < 0.0001). We conclude that cortical lesions and direct electrical stimulation sites associated with vertigo map to a common brain network, offering insights into the causal neuroanatomical substrate of vertigo.

9.
Brain Stimul ; 16(5): 1302-1309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37633491

RESUMEN

BACKGROUND: Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) is an effective treatment for refractory epilepsy; however, seizure outcome varies among individuals. Identifying a reliable noninvasive biomarker to predict good responders would be helpful. OBJECTIVES: To test whether the functional connectivity between the ANT-DBS sites and the seizure foci correlates with effective seizure control in refractory epilepsy. METHODS: We performed a proof-of-concept pilot study of patients with focal refractory epilepsy receiving ANT-DBS. Using normative human connectome data derived from 1000 healthy participants, we investigated whether intrinsic functional connectivity between the seizure foci and the DBS site was associated with seizure outcome. We repeated this analysis controlling for the extent of seizure foci, distance between the seizure foci and DBS site, and using functional connectivity of the ANT instead of the DBS site to test the contribution of variance in DBS sites. RESULTS: Eighteen patients with two or more seizure foci were included. Greater functional connectivity between the seizure foci and the DBS site correlated with more favorable outcome. The degree of functional connectivity accounted for significant variance in clinical outcomes (DBS site: |r| = 0.773, p < 0.001 vs ANT-atlas: |r| = 0.715, p = 0.001), which remained significant when controlling for the extent of the seizure foci (|r| = 0.773, p < 0.001) and the distance between the seizure foci and DBS site (|r| = 0.777, p < 0.001). Significant correlations were independent of variance in the DBS sites (|r| = 0.148, p = 0.57). CONCLUSION: These findings suggest that functional connectomic profile is a potential reliable non-invasive biomarker to predict ANT-DBS outcomes. Accordingly, the identification of ANT responders could decrease the surgical risk for patients who may not benefit and optimize the cost-effective allocation of health care resources.


Asunto(s)
Núcleos Talámicos Anteriores , Conectoma , Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsias Parciales , Humanos , Epilepsia Refractaria/terapia , Proyectos Piloto , Núcleos Talámicos Anteriores/fisiología , Convulsiones/terapia , Biomarcadores , Epilepsias Parciales/terapia
10.
Microbiol Spectr ; 10(5): e0184422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135710

RESUMEN

Fermented foods often have attractive flavor characteristics to meet various human demands. An ever-challenging target is the production of fermented foods with equal flavor profiles outside the product's origin. However, the formation of geography-dependent flavor in high-complexity fermentations remains poorly understood. Here, taking Chinese liquor (baijiu) fermentation as an example, we collected 403 samples from 9 different locations in China across a latitude range of 27°N to 37°N. We revealed and validated the geography-dependent flavor formation patterns by using culture-independent (metabolomics, metagenomics, and metatranscriptomics) and culture-dependent tools. We found that the baijiu microbiomes along with their metabolites were flavor related and geography dependent. The geographical characteristics were determined mainly by 20 to 40 differentiated chemical markers in metabolites and the latitude-dependent fungal structure of the microbiome. About 48 to 156 core microbiota members out of 735 bacterial genera and 290 fungal genera contributed to the chemical markers. The contributions of both fungi and bacteria were greater than those from either bacteria or fungi alone. Representatively, we revealed that dynamic interdependent interactions between yeasts and Lactobacillus facilitated the metabolism of heterocyclic flavor chemicals such as 2-acetylpyrrole, 2,3,5-trimethylpyrazine, and 2-acetylfuran. Moreover, we found that the intraspecific genomic diversity and microbial structure were two biotic factors that contributed to dynamic microbiome assembly. Based on the assembly pattern, adjusting the composition and distribution of initial species was one option to regulate the formation of diverse flavor characteristics. Our study provided a rationale for developing a microbiome design to achieve a defined flavor goal. IMPORTANCE People consume many spontaneously fermented foods and beverages with different flavors on a daily basis. One crucial and hotly discussed question is how to reproduce fermented food flavor without geographical limitations to meet diverse human demands. The constantly enriched knowledge of the microbial contribution to fermented flavor offers valuable insights into flavor biotechnological development. However, we still have a poor understanding of what factors limit the reproduction of fermented flavor outside the product's origin in high-complexity spontaneous fermentations. Here, taking baijiu fermentation as an example, we revealed that geography-dependent flavor was contributed mainly by fungus-bacterium cooperative metabolism. The distinct initial microbial composition, distribution, and intraspecific genomic diversity limited reproducible microbial interactions and metabolism in different geographical areas. The abundant microbial resources and predicted fungus-bacterium interactions found in baijiu fermentation enable us to design a synthetic microbial community to reproduce desired flavor profiles in the future.


Asunto(s)
Bacterias , Microbiota , Humanos , Fermentación , Bacterias/metabolismo , Microbiota/fisiología , Hongos/fisiología , Geografía
11.
Brain Stimul ; 15(3): 601-604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35427811

RESUMEN

OBJECTIVES: To investigate the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on patients with benign epilepsy with centrotemporal spikes (BECTS). METHODS: In this open pilot study, we enrolled four BECTS patients who had frequent seizures (at least 3 seizures during the 3-month baseline). After localizing sources of interictal epileptiform discharges (IEDs) with magnetoencephalography, IEDs-source-rTMS (1 Hz) with 500 pulses at 90% of resting motor threshold was applied for 10 weekdays in each patient. The primary outcome measure was the seizure-reduction rate after rTMS. Other outcome measures were the spike-wave index (SWI), behavioral evaluation, and adverse effects. RESULTS: All four patients received at least 3 months seizure-free after rTMS. Compared with baseline, SWI decreased significantly after rTMS in three patients (patient 1, 3 and 4) (P = .002, P = .007, and P < .001, respectively). Attention deficit identified in two patients in baseline recovered to the normal range after rTMS. No adverse effect was observed. DISCUSSION: Our preliminary observation provides a promising approach to reducing clinical seizures for BECTS with frequent seizures. Of importance, our data may provide a potentially novel method for the high prevalence of behavioral problems in BECTS patients via decreasing cortical hyperexcitability.


Asunto(s)
Epilepsia Rolándica , Electroencefalografía/métodos , Epilepsia Rolándica/terapia , Humanos , Proyectos Piloto , Convulsiones/terapia , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos
12.
Commun Biol ; 5(1): 1123, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274105

RESUMEN

The basal ganglia play a key role in integrating a variety of human behaviors through the cortico-basal ganglia-thalamo-cortical loops. Accordingly, basal ganglia disturbances are implicated in a broad range of debilitating neuropsychiatric disorders. Despite accumulating knowledge of the basal ganglia functional organization, the neural substrates and circuitry subserving functions have not been directly mapped in humans. By direct electrical stimulation of distinct basal ganglia regions in 35 refractory epilepsy patients undergoing stereoelectroencephalography recordings, we here offer currently the most complete overview of basal ganglia functional characterization, extending not only to the expected sensorimotor responses, but also to vestibular sensations, autonomic responses, cognitive and multimodal effects. Specifically, some locations identified responses weren't predicted by the model derived from large-scale meta-analyses. Our work may mark an important step toward understanding the functional architecture of the human basal ganglia and provide mechanistic explanations of non-motor symptoms in brain circuit disorders.


Asunto(s)
Ganglios Basales , Sensación , Humanos , Vías Nerviosas/fisiología , Ganglios Basales/fisiología
13.
Bioresour Technol ; 277: 68-76, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30658338

RESUMEN

Water is crucial for microbial growth, heat transfer and substrate hydrolysis, and dynamically changes with time in solid-state fermentation. However, water dynamics in the solid substrate is difficult to define and measure. Here, nuclear magnetic resonance was used to monitor water dynamics during the pure culture of Aspergillus oryzae YH6 on wheat in a model system to mimic solid starter (Qu or Koji) preparation. During fermentation, overall water content gradually decreased from 0.84 to 0.36 g/g, and water activity decreased from 0.99 to 0.93. Water content in different state (bound, immobilized and free) changed differently and all moved to more "bound" direction. The internal water distribution over the substrate matrix also showed a faster reduction inward both in the radical and axial direction. Our findings provide the prerequisites for optimal processes where water dynamics in solid-state fermentation can be monitored and controlled.


Asunto(s)
Aspergillus oryzae/metabolismo , Fermentación , Hidrólisis , Triticum/metabolismo , Agua
14.
Huan Jing Ke Xue ; 31(5): 1359-64, 2010 May.
Artículo en Zh | MEDLINE | ID: mdl-20623877

RESUMEN

Surface soil samples around Guanting Reservoir ranging from 2-10 km were measured for pesticide residues (HCHs and DDTs) concentrations in 2009. Occurrences and related environmental risk were analyzed; furthermore, GIS and geostatistical techniques were applied to analyze the spatial variation of organochlorine pesticides. The results show that concentrations of HCHs in soils range from n.d. to 14.97 ng x g(-1) with a mean value of 0.73 ng x g(-1), and DDTs range from n.d. to 64.91 ng x g(-1) with a mean value of 6.46 ng x g(-1). According to the isomers of HCHs and metabolites of DDTs, HCHs and DDTs residues in soils were primarily from historical use. The land use showed great effect on the degradation of HCHs and DDTs, with the residual level sequence of orchard >> crop land > barren land. Based on kriging interpolation, the spatial distribution of HCHs and DDTs around Guanting Reservoir was observed. Spatial variability indicated how HCHs and DDTs had been applied and distributed in the past. Compared with those in other national or international regions, the concentrations of HCHs and DDTs in soils around Guanting Reservoir were very low.


Asunto(s)
DDT/análisis , Hexaclorociclohexano/análisis , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Abastecimiento de Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA